Математика/1. Дифференциальные и
интегральные уравнения
Прохоренко
М.В.
До питання періодичності розв’язків
диференціальних
рівнянь
з імпульсною дією
Розглянемо розривну динамічну систему [1], визначену в просторі Rn системою диференціальних рівнянь
(1)
( для всіх , квадратна матриця розміру зі сталими
коефіцієнтами, до того
ж , спектр матриці ) та умовами імпульсної дії
(2)
(- задана гіперплощина, - заданий вектор, константи).
Рух
фазової точки в системі (1)-(2) здійснюється по одній з траєкторій системи (1)
в проміжку між двома послідовними попаданнями фазової точки на гіперплощину , а в момент попадання фазова точка “миттєво”
перекидається за законом (2) в точку гіперплощини , де , .
Вважаємо, що:
(3)
. (4)
Співвідношення (3), (4) забезпечують розташування
прямої між та початком координат.
В роботі [2] показано, що
задача про існування періодичних розв’язків задачі (1)-(2) зводиться до задачі про
існування нерухомих точок оператора
,
які шукаються з
системи
(5)
де ; - період розв’язку.
Для визначеності вважатимемо, що .
Теорема. Нехай - діагональна матриця
з дійсними елеменами . Для того, щоб при заданих і існував періодичний
розв’язок системи (1)-(2) достатньо виконання однієї з умов:
1) ;
2) , при і .
Доведення. З’ясуємо умови існування нерухомих точок оператора для зазначених
елементів матриці .
1) Нехай всі елементи матриці дійсні, від’ємні і
рівні між собою, тобто: . Тоді система (5) набуває вигляду
та має єдиний
розв’язок
що при заданих і однозначно визначає
координати нерухомої точки оператора Ф.
2) Нехай всі елементи матриці дійсні, від’ємні та
попарно різні. У цьому випадку система (5) запишеться у вигляді
розв’язком якої є
координати нерухомої точки оператора Ф
,
а період знаходиться з рівняння
.
(6)
Знаходження розв’язку рівняння (6) еквівалентне
відшуканню нулів функції
.
Має місце
гранична поведінка , , і при . Тобто, за умови виконання теореми функція матиме принаймі один
нуль. Теорема доведена.
Література:
1.
Самойленко М.А.,
Перестюк Н.А. Дифференциальные уравнения с импульсным возействием.-К.:
Наук.думка,1987. –216 с.
2.
Мороз М.В. Про існування періодичних розв’язків системи
двох диференціальних рівнянь з імпульсною дією // Укр.мат.журн. -2002. – Т.54,
№1.- С. 133-137.