Математика/ 1.Дифференциальные и
интегральные уравнения.
К.ф.-м. н.
Ысмагул Р.С.
Костанайский государственный
университет им. А.Байтурсынова, Казахстан
Рассмотрим систему
интегро-дифференциальных уравнений вида
где x,Q,R– n векторы-столбцы; P(t,φ) –
матрица размерности n×n, φ = (
φ1, …, φт,
…) – счетномерный вектор, ,
>0 – малые параметры.
- дифференциальный оператор вида
, где
. Положим, что
,
,
где
,
-положительные постоянные.
Пусть n-мерное вектор функция определена и непрерывна в области
, где
счетно-мерный вектор с нормой
.
Введем некоторый класс n- мерных вектор-функций от счетномерного вектора , где основную роль играет усиленное условие Липщица
введенное К.П.Персидским, удовлетворяющих условиям
, почти многопериодических
по
с
-вектор –почти периодом
, где
при
.
Пусть .Рассмотрим
дифференциальный оператор
.
Для сокращения записи введем .Заметим что коэффициентами
усиленного условия Липшица
для вектор-функции
являются
.
Пусть
- характеристическая
функция оператора
, которая удовлетворяет интегральному уравнению
.
Для характеристической функции имеют место оценки, аналогичные соотношениям вида I(a-b) и 10-90 [1].
Рассмотрим линеаризованное уравнение: . (2)
Пусть -матрица типа Грина для уравнения (2) .Будем считать, что
выполняется группа оценок , аналогичным оценкам II(a-b) [1].
Рассмотрим оператор Т, отображающий каждую
вектор-функцию в вектор-функцию
Пусть,
где
которое известно из [1]. Будем изучать
Для вектор-функции выполняются соотношения вида:
, где
;
, (3)
Полагая теперь , можно записать
. Из оценок III(a-d) и (3) следует,
что существует такое число
, для которого при всех
выполняются
соотношения:
1)
,
2)
,
3)
,
4)
.
Тем самым приходим к утверждению следующей
теоремы .
Теорема. Если уравнение (2) некритическое
относительно класса и выполнены условия
,
для уравнения (1), то
для всех значений
,
уравнение (1) имеет единственное
почти многопериодическое решение из класса
, сходящиеся при
в нулевой вектор.
Литература
1. Исмагулова Р.С. О
применении метода укорочения к построению почти многопериодического решения
одной системы интегродифференциальных уравнений частных производных //
Алма-Ата, 1987, 25 с. Деп. в ВИНИТИ 3.07.87.№5474-В.87 Деп.