Байбурина М.А., Ивахненко Н.Н.

ДонНУЭТ

 

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ КАК МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РЕАЛЬНОГО МИРА

 

Понятия, созданные современной математикой, зачастую кажутся весьма далекими от реального мира. Но именно с их помощью людям удалось проникнуть в тайны строения атомного ядра, рассчитать движение космических кораблей, создать весь тот мир техники, на котором основано современное производство. Одним из основных методов познания природы является опыт, эксперимент. С помощью экспериментов были установлены многие законы природы (закон сохранения вещества и энергии, периодическая система элементов Д.И. Менделеева и т.д.). Однако не всегда целесообразно проводить эксперимент. За последнее столетие в самых различных областях науки и техники все большую роль стал играть метод математического моделирования.

Чтобы изучить какое-нибудь явление природы или работу машины, предварительно изучают всевозможные связи между величинами, их характеризующими. Затем полученные связи выражают математически и приходят к системе уравнений. Решая эти уравнения или системы уравнений, ученые и инженеры делают выводы о том, как в дальнейшем будет развиваться это явление или как будет работать машина, что надо сделать, чтобы получить требуемые результаты.

При этом уравнения и системы уравнений бывают алгебраическими и дифференциальными. Чтобы получить уравнения, допускающие решения, приходиться упрощать задачу, отбрасывая некоторые величины как несущественные. Но чем точнее нужен результат, тем больше величин приходиться учитывать, тем сложнее получается математическая модель.

Математические модели, которые строили в 19 веке, были сравнительно простыми. Но возрастающие требования к точности ответа, развитие техники, познание разнообразных явлений привели к построению все более сложных математических моделей.

Сейчас с помощью математического моделирования решают такие задачи, как описание природы морей и океанов, распада радиоактивных веществ, перевод текстов с одного языка на другой и т.п. Появилась возможность строить математические модели экономики, применять математику в изучении общественных явлений.

Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Чтобы охарактеризовать её место в современной математической науке, прежде всего, необходимо подчеркнуть основные особенности теории дифференциальных уравнений.

Первая особенность – это непосредственная связь теории дифференциальных уравнений с приложениями. Характеризуя математику как метод проникновения в тайны природы, можно сказать, что основным путем применения этого метода является формирование и изучение математических моделей реального мира. Изучая какие-либо физические явления, исследователь, прежде всего, создает его математическую идеализацию или, другими словами, математическую модель, то есть, пренебрегая второстепенными характеристиками явления, он записывает основные законы, управляющие этим явлением, в математической форме. Очень часто эти законы можно выразить в виде дифференциальных уравнений. Такими оказываются модели различных явлений механики сплошной среды, химических реакций, электрических и магнитных явлений и др.

Для составления математической модели в виде дифференциальных уравнений нужно, как правило, знать только локальные связи и не нужна информация обо всем физическом явлении в целом. Математическая модель дает возможность изучать явление в целом, предсказать его развитие, делать качественные оценки измерений, происходящих в нем с течением времени. На основе анализа дифференциальных уравнений были открыты электромагнитные волны, и только после экспериментального подтверждения Герцем фактического существования электромагнитных колебаний стало возможным рассматривать уравнения Максвелла как математическую модель реального физического явления.

Как известно, теория обыкновенных дифференциальных уравнений начала развиваться в XVII веке одновременно с возникновением дифференциального и интегрального исчисления. Можно сказать, что необходимость решать дифференциальные уравнения для нужд механики, то есть находить траектории движений, в свою очередь, явилась толчком для создания Ньютоном нового исчисления.

Итак, первая черта теории дифференциальных уравнений – ее тесная связь с приложениями. Другими словами, можно сказать, что теория дифференциальных уравнений родилась из приложений. В этом своем разделе- теории дифференциальных уравнений - математика, прежде всего, выступает как неотъемлемая часть естествознания, на которой основывается вывод и понимание количественных и качественных закономерностей, составляющих содержание наук о природе. Именно естествознание является для теории дифференциальных уравнений источником новых проблем, оно в значительной мере определяет направление их исследований, дает правильную ориентацию этим исследованиям. Более того, дифференциальные уравнения не могут плодотворно развиваться в отрыве от физических задач.

Второй особенностью теории дифференциальных уравнений является ее связь с другими разделами математики, такими, как функциональный анализ, алгебра и теория вероятностей. Теория дифференциальных уравнений и особенно теория уравнений с частными производными широко используют основные понятия, идеи и методы этих областей математики и, более того, влияют на их проблематику и характер исследований. Некоторые большие и важные разделы математики были вызваны к жизни задачами теории дифференциальных уравнений. В теории дифференциальных уравнений ясно прослеживается основная линия развития математики: от конкретного и частного через абстракцию к конкретному и частному.

Многие разделы теории дифференциальных уравнений так разрослись, что стали самостоятельными науками. Можно сказать, что большая часть путей, связывающих абстрактные математические теории и естественнонаучные приложения, проходит через дифференциальные уравнения. Все это обеспечивает теории дифференциальных уравнений почетное место в современной науке.

Литература

1. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и   математический   анализ для 11 класса / учебное пособие для учащихся школ и классов с углубленным изучением математики.–М.:Просвещение,1999. – 288 с.

2.  Глейзер Г.И. История математики в школе 9-10 класс. – М.: Просвещение, 1983.

3. Федорова А.А. Составление простейших дифференциальных уравнений на школьном факультативе// Научные труды МПГУ.– М, «Прометей», 2005.