Бигаринов Р.А.

Евразийский Национальный Университет им. Л.Гумилева

Система и управление

В работе рассматривается проблема особенности построения систем и управление на различных примерах.

Благодаря постоянным потокам информации (от системы к окружающей среде и наоборот) система осуществляет целесообразное взаимодействие с окружающей средой, т.е. управляет или бывает управляема. Информация стала средством не только производства, но и управления.

Своевременная и оперативная информация может позволить стабилизировать систему, приспосабливаться и(или) адаптироваться, восстанавливаться при нарушениях структуры и (или) подсистем. От степени информированности системы, от богатства опыта взаимодействия системы и окружающей среды зависит развитие и устойчивость системы.

Информация обладает также определенной избыточностью: чем больше сообщений о системе, тем полнее и точнее она управляется.

Суть задачи управления системой - отделение ценной информации от "шумов" (бесполезного, иногда даже вредного для системы возмущения информации) и выделение информации, которая позволяет этой системе существовать и развиваться. Управление - это целенаправленная актуализация знаний. Управление и особая форма - самоуправление, - высшая форма актуализации знаний.

Управление в системе - внутренняя функция системы, осуществляемая независимо от того, каким образом, какими элементами системы она должна выполняться.

Управление системой - выполнение внешних функций управления, обеспечивающих необходимые условия функционирования системы (см. рис. 1.).

Рис. 1. Общая схема управления системой

Управление системой (в системе) используется для различных целей:

1.     увеличения скорости передачи сообщений;

2.     увеличения объема передаваемых сообщений;

3.     уменьшения времени обработки сообщений;

4.     увеличения степени сжатия сообщений;

5.     увеличения (модификации) связей системы;

6.     увеличения информации (информированности).

Как правило, эти цели интегрируются.

В целом информация используется для двух основных глобальных целей: сохранения стабильного функционирования системы и перевода системы в заданное целевое состояние.

В средствах массовой информации правительство чаще ругают, актеров чаще хвалят, спортсменов упоминают обычно в связи со спортивными результатами, прогноз погоды бывает, как правило, кратким, новости политики - официальными.

Управление - непрерывный процесс, который не может быть прекращен, ибо движение, поток информации в системе не прекращается.

Цикл управления любой системой (в любой системе) таков:

{ сбор  информации о системе

              обработка и анализ информации

                     получение информации о траектории

                            выявление управляющих параметров 

                                   определение ресурсов для управления  

                                          управление траекторией  системы }

Основные правила организации информации для управления системой:

1.     выяснение формы и структуры исходной (входной) информации;

2.     выяснение средств, форм передачи и источников информации;

3.     выяснение формы и структуры выходной информации;

4.     выяснение надежности информации и контроль достоверности;

5.     выяснение форм использования информации для принятия решений.

Пример. При управлении полетом ракеты, наземная станция управления генерирует и в определенной форме, определенными структурами посылает входную информацию в бортовую ЭВМ ракеты; при этом сигналы отсеиваются от возможных "шумов", осуществляется контроль входной информации на достоверность и только затем бортовая ЭВМ принимает решение об уточнении траектории, ее корректировке.

Если число возможных состояний системы S равно N, то общее количество разнообразия системы (мера выбора в системе - см. выше "информационные меры") равно

V(N)=log2N.

Пусть управляемая система обладает разнообразием V(N1), а управляющая - V(N2). Цель управляющей системы - уменьшить значение V(N1) за счет изменения V(N2). В свою очередь, изменение V(N1), как правило, влечет изменение и V(N2), а именно, управляющая система может эффективно выполнять присущие ей функции управления лишь при условии, если верно неравенство

V(N2) >= V(N1).

Это неравенство выражает принцип Эшби (необходимого разнообразия управляемой системы): управляющая подсистема системы должна иметь более высокий уровень организации (или большее разнообразие, больший выбор), чем управляемая подсистема, т.е. многообразие может быть управляемо (разрушено) лишь многообразием.


Функции и задачи управления системой:

1.   Организация системы - полное, качественное выделение подсистем, описание их взаимодействий и структуры системы (как линейной, так и иерархической, сетевой или матричной).

2.   Прогнозирование поведения системы, т.е. исследование будущего системы.

3.   Планирование (координация во времени, в пространстве, по информации) ресурсов и элементов, подсистем и структуры системы, необходимых (достаточных - в случае оптимального планирования) для достижения цели системы.

4.   Учет и контроль ресурсов, приводящих к тем или иным желаемым состояниям системы.

5.   Регулирование - адаптация и приспособление системы к изменениям внешней среды.

6.   Реализация тех или иных спланированных состояний, решений.

Функции и задачи управления системой взаимосвязаны, а также взаимозависимы. Нельзя, осуществлять полное планирование в экономической системе без прогнозирования, учета и контроля ресурсов, без анализа спроса и предложения - основных регуляторов рынка. Экономика любого государства - всегда управляемая система, хотя подсистемы управления могут быть организованы по-разному, иметь различные элементы, цели, структуру, отношения.

По характеру управления, охвата подсистем и подцелей (цели системы) управление может быть:

1.   стратегическое, направленное на разработку, корректировку стратегии поведения системы;

2.   тактическое, направленное на разработку, корректировку тактики поведения системы.

По времени управляющего воздействия системы могут быть: долгосрочно и краткосрочно управляемые. Иногда отождествляют стратегическое и долгосрочное, тактическое и краткосрочное управление, но это не всегда верно.

Любая серьезная экономическая система стратегического управления должна включать в себя управляющую (информационную) подсистему, обрабатывающую, актуализирующую стратегическую информацию об инновационных мероприятиях, инвестиционных условиях, о возможностях и состояниях рынков товаров, услуг, ценных бумаг, доступных ресурсах, финансовых условиях и критериях, принципах и методах управления и др. Такие системы обычно имеют следующие цели и, часто, соответствующие им структуры:

1.   управление координацией (Project Integration Management);

2.   управление целями (Project Scope Management);

3.   управление временем (Project Time Management);

4.   управление стоимостью (Project Cost Management);

5.   управление качеством (Project Quality Management);

6.   управление людскими ресурсами (Project Human Resource Management);

7.   управление коммуникациями (Project Communication Management);

8.   управление рисками (Project Risk Management);

9.   управление поставками (Project Procurement Management).

Все эти функции тесно переплетены между собой.

Выявление управляющих параметров и их использование для управления системой может также способствовать уменьшению сложности системы. В свою очередь, уменьшение сложности системы может сделать систему управляемой.

Система называется устойчивой структурно (динамически; вычислительно; алгоритмически; информационно; эволюционно или самоорганизационно), если она сохраняет тенденцию стремления к тому состоянию, которое наиболее соответствует целям системы, целям сохранения качества без изменения структуры или не приводящим к сильным изменениям структуры (динамики поведения; вычислительных средств; алгоритмов функционирования системы; информационных потоков; эволюции или самоорганизации - см. ниже) системы на некотором заданном множестве ресурсов (например, на временном интервале). Расплывчатое понятие "сильное изменение" каждый раз должно быть конкретизировано, детерминировано.

Понятие сложности детализируется в различных предметных областях по-разному. Для конкретизации этого понятия необходимо учитывать предысторию, внутреннюю структуру (сложность) системы и управления, приводящие систему к устойчивому состоянию. Впрочем, все внутренние связи на практике достаточно трудно не только описать, но и обнаружить. В этих случаях помогает выяснение и описание связности системы, связной и асимптотической устойчивости ее.

Асимптотическая устойчивость системы состоит в возврате системы к равновесному состоянию при t∞ из любого неравновесного состояния.

Пример. Известная игрушка "Ванька-встанька" - пример такой системы.

Пусть система S зависит от вектора факторов, переменных x=(x1,x2,...,xn).

Матрицей системы назовем матрицу E=||eij|| из 1 и 0: eij=1 лишь тогда, когда переменная xiоказывает влияние на xj.

Связная устойчивость состоит в асимптотической устойчивости системы при любых матрицах Е.

Пример. Рассмотрим множество друзей X={Иванов, Петров, Сидоров} и городов Y={Астана, Париж, Алматы}. Тогда можно построить 3D-структуру в R3 (в пространстве трех измерений - высота, ширина, длина), образуемую связыванием элементов X и Y, например, по принципу "кто где был" (рис 2). В этой структуре были использованы сетевые 2D-структуры X, Y (которые, в свою очередь, использовали 1D-структуры). При этом элементы X и Y можно брать как точки, элементы пространства нулевого измерения R0.


Рис. 2.
Геометрическая иллюстрация сложных связных структур

При системном анализе различных систем, особенно социально-экономических, удобным инструментом их изображения и изучения является инструментарий когнитивной структуризации и системно-когнитивная концепция.

Литература

1.   Р.Дроф, Р. Бишоп Современные системы управления: М.: лаборатория базовых Знаний, 2002

2.   Казиев В.М. - Введение в анализ, синтез и моделирование систем

3.   CNEws – Обзоры, 2006

4.   Острем К., Виттенмарк Б. Системы управления с ЭВМ- М.Мир, 1997

5.   Сергей С. Информационные системы в государственном секторе,  www.idc.com

__________________