9. Авиация и космонавтика

Nickolay Zosimovich

 National aviation university, Kiev, Ukraine

Space vehicle identification parameters on the basis of an optimum filtration

 

Introduction. The problem of control of Space Vehicle (SV) descent in planet atmosphere represents enough challenge, which even more becomes complicated presence of casual indignations, absence of the qualitative aprioristic information on environmental parameters and about a condition vehicle during the initial moment of time. It leads to increase of the requirements shown to various systems of SV and, first of all, to systems of navigation and control.

At the decision of a considered problem it is possible to use the algorithms of navigation founded on statistical methods of the information processing [1-3]. Considering, that information processing is carried out with use of the onboard computer, algorithms of identification should have recurrent character. Such algorithms can be as follows: 1) the algorithms based on Kalman filtration ratio and 2) the algorithms based on definition of a maximum density of aposteoristic probability concerning results of measurements with use of a method of invariant immersing [4].

1. Statement of the problem of parameters identification of the SV condition under the Kalman ratio basis. Generally the equations of SV movement and measurements can be described by the formulas [5]:

                                                                     (1)

                                                                                  (2)

where   th degree condition of vector-function  controls  and time   degree vector-function of measurements;  degree vector of measurements;  degree matrix of indignations;  degree vector of indignations;  degree vector of noise of the measurements channel;  and  Gausses white noise with diagonal matrixes of intensity  and [6].

 Components of the vector of condition  during the initial moment of time are random variables, which submit to the normal law of distribution with next parameters

Using methods of identification by means of Kalman ratio are demanding linearing initial systems (1) and (2). It is recommended providing linearing by leading under relation of estimation  on the previous step at the moment of time as at linearing concerning a nominal condition convergence of estimations can be appear insufficiently high. Because of complexity and considerable nonlinearity of expressions (1) and (2) linearization was spent by use of numerical methods.

As a result of linearization on the interval  the initial system is leading as

                                   (3)

                                                  (4)

where  

 

Let's consider two algorithms of identification based on Kalman recurrent ratio, namely, the expanded Kalman filter and the iterative consecutive Kalman filter. Taking into account it the algorithm of expanded Kalman filter can be written down in a kind [7]:

Algorithms of identification on the basis of a method of invariant immersing allows to avoid errors, arising at linearing the equations (1) and (2). On the other hand, using the given algorithm puts forward rigid requirements to formation of a SV condition vector that is caused by increase in volume of the computing operations connected to calculation of a dispersions matrix at identification in real time.

2. Construction of vector measurements of SV linear accelerations and angular speeds at descent in atmosphere. Apriority we accept, that sources of the information are gauges linear acceleration and the angular speeds, established on connected axes of SV [8, 9]. Such form of gauges installation is usually used in non-platform inertial systems of navigation which till now have shown reliability in operation and are widely distributed [10-13]. In that case the vector of measurements can be submitted as system of algebraic expressions.

where  mistakes in indications of gauges.

There are some sources of mistakes of gyroscope and accelerometers [5]. In this article we shall consider only most essential of them, namely, mistakes of scaling, casual leaving of a gyroscope, nonortogonal axes and drift of zero. Mistakes are set as stationary Gauss process with exponential correlation function. Simulating mistakes of measurements is carried out by means of forming filter of the first order with constant factors [14]:

                                                            (5)

where  index of a source of mistakes;  dispersion of a mistake;  white noise. The system of the equations describing indignant movement SV in an atmosphere, added with ratio (5), gives the expanded system of the equations of movement SV with error check of measurements.

The operational and information analysis of algorithms expanded and iterative Kalman Filter Approach, carried out with the purpose of an opportunity estimation their realization in integrated system SV onboard control, has shown, that the given algorithm to volume of operative memory of an onboard computer requirements does not didn’t. In the assumption, that on each step of algorithm functioning will be made no more than [15], required speed will make 800 000 ор/s at length of short operation about 1 мks. Thus, the suggested algorithms of a vector estimating of condition SV on a site of descent in atmosphere can be successfully realized by means of onboard computers.

Conclusion. The problem of spacecraft identification by means of basis Kalman filtration and a methode aposteoristic was put to density of probability. As a result of the decision of this problem algorithms of identification which are based on a method of invariant immersing process of the equations are reseived. Hence, the considered algorithms of identification can be applied to parameters of condition estimation of space vehicle at descent in planet’s atmosphere. 

 

References

1.     Статистическая динамика управляемого полета / А.А. Лебедев, В.Т. Бобронников, М.Н. Красильщиков, В.В. Малышев. – М.: Машиностроение, 1978. – 200 с. 

2.     Статистическая динамика и оптимизация управления летательных аппаратов /А.А. Лебедев, В.Т. Бобронников, М.Н. Красильщиков, В.В. Малышев. – М.: Машиностроение, 1985. – 278 с.

3.     Зосимович Н.В. Статистическая модель параметров транспортных возмущений КА // “Наука і освіта2005”. Матеріали VIIІ Міжнародної науково-практичної конференції 7-21 лютого 2005.- Том 60: Техніка. Дніпропетровськ: Наука і освіта, 2005.- C. 70-73.

4.     Федоренко Р.П. Приближенное решение задач оптимального управления. – М.: Наука, 1978. – 487 с.

5.     Управления и навигация искусственных спутников Земли на околокруговых орбитах / М.Ф. Решетнев, А.А. Лебедев, В.А. Бартенев и др. – М.: Машиностроение, 1988. – 336 с.

6.     Бордовицина Т.В., Шарковский Н.А. Численные алгоритмы высокоточного прогнозирования движения ИСЗ // Труды V научных чтений по космонавтике, Москва, 2-6 февраля 1981 г. : Прикладная небесная механика и управление движением. – М.: АН СССР, 1981. – С. 15-23.

7.     Васильев В.А. Методы оптимальной фильтрации в системах управления космических аппаратов // Вопросы управления космическими аппаратами. – М.: Мир, 1975. – С. 58-91.

8.     Advances in Attitude Determination with Redundant Inertial Measurement Units // AAS Journal of the Astronautical Sciences.  (Special Edition for the Malcolm D. Shuster Symposium). - Vol. 54, No. 3&4, 2007.

9.      A Kalman Filter Approach to System Alignment Calibration, Paper No. AAS 00-127, AAS/AIAA Space Flight Mechanics Meeting, January 2000.

10.  Лидов М.Л., Тесленко Н.М. Оптимизация решения некоторых задач управления полетом космических аппаратов методом спуска по параметру / Математическое обеспечение космических экспериментов. – М.: Наука, 1978. – С. 112-141.

11.  Определение точности системы ориентации и стабилизации спутника телевещания «Экран» по результатам летных испытаний и возможные пути ее повышения / Калинович С.Н., Мирошниченко Л.А., Маркелов Г.М. и др.// Труды V научных чтений по космонавтике, Москва, 2-6 февраля 1981 г.: Прикладная небесная механика и управление движением. – М.: АН СССР, 1981. – С. 67-79. 

12.  Projection of Future Space Shuttle traffic demands, SSV-28-9, 1982. – 12 pp.

13.  Boyland R.E., Kline R.L. Manned orbit transfer vehicles and their missions // Earth-Oriented Appl. Space Techn., 1982, № 1,7.

14.  Miller C.E., Phelps R.K., Scheidenhelm R. Nactical Quidance Reguirements for Strapdown Inertial // Proc. NAECON, 1977. – pp. 433-440.

15.  Орлов С.А. Технологии разработки программного обеспечения: Учебник для вузов. 3-е изд. – Спб.: Питер, 2004. – 527 с.