Григорів С.Ф.
Тернопільський національний економічний університет
Івано-Франківський інститут менеджменту, Україна
Математичне моделювання в задачах
оцінки зміни заробітної плати та зайнятості
Розглядається
модель, в якій взаємодіють роботодавці та наймані робітники, причому вказаний
ринок характеризується заробітною платою
та числом зайнятих
. Вважається що на ньому існує рівновага, тобто [1], виникає
ситуація, при якій за плату
погоджуються
працювати
чоловік. Функції
та
можуть відхилятись
від значень
і
. Вважається, що роботодавці змінюють зарплату пропорційно чисельності
зайнятих від значення, що відповідає положенню рівноваги:
![]()
Іншим
допущенням є гіпотеза про те, що число робітників збільшується або зменшується
пропорційно росту або зменшенню заробітної плати відносно рівня в положенні
рівноваги:
![]()
Для коректної
постановки вказаної задачі необхідно задати початкові умови:
![]()
Задача
–
може бути розв’язана за допущенням
;
. Очевидно, що записуючи рівняння
і
у вигляді системи:
![]()
одержуємо:
+
=0
![]()
Рівність
дає можливість
детального аналізу ситуації – залежність
є рівнянням еліпса,
який може бути зображеним у системі координат, центр якої перенесено в точку
:

точка А відповідає мінімальній
чисельності зайнятих при рівні заробітної плати
; точка В – максимальний рівень заробітної плати при
чисельності зайнятих
; точка С – максимальна чисельність зайнятих при
, і точка D відповідає мінімальному рівню заробітної плати при
.
Крім того,
методом виключення змінних система рівнянь
–
може бути про інтегрована з умовами
, при цьому система може бути подана у вигляді 
звідки:
![]()
звідси, з урахуванням
, одержуємо:
![]()
Отже:
![]()
Очевидно, що
дозволяє зробити
висновок про те, що чисельність зайнятих може бути більша, ніж в положенні
рівноваги, як і значення заробітної плати може перевищувати те, яке відповідає
значенню рівноваги. Функції
є періодичними з
періодом
. Проводячи оцінку середнього значення
заробітної плати та
чисельності зайнятих
за період коливань за
формулою інтегрального середнього
:
![]()
одержуємо:
![]()
![]()
Інтеграли від
тригонометричних функцій в
та
дорівнюють нулю,
оскільки відбувається інтегрування по періоду, наприклад:

Таким чином
можна зробити висновок про те, що середнє значення фонду заробітної плати
за період коливань
дорівнює значенню в положенні рівноваги
. Наведені результати стосуються випадку
,
, якщо ж розглядати модель
і
, тобто, більш складний характер залежностей
і
, то в такому випадку система
і
допускає або точний
аналітичний розв’язок, або для оцінки її поведінки необхідно застосовувати
чисельні методи (схеми Рунге-Кутта), що може бути предметом подальших
досліджень в даному напрямку: в такому випадку система
і
набуває вигляду:
![]()
звідки для визначення
одержується рівняння:
![]()
з умовами
. При цьому, як було зазначено вище, методика розв’язування
визначається
складністю аналітичного подання функцій
і
. Очевидно, якщо
і
, то
співпадає з першим з
рівнянь системи
, що показує співпадання граничних випадків моделювання вказаної
економічної ситуації.
Література.
1.
Самарский А.А., Михайлов А.П. Математическое моделирование: Идеи. Методы.
Примеры. - / А.А. Самарский, А.П. Михайлов. - М.: ФИЗМАТЛИТ, 2005. - 320с.
2.
Зорич В. А. Математический анализ. Часть I. - / В.А. Зорич. - М.: Наука,
Гл. ред. физ.-мат. л-ры, 1981. - 544 с.