Graduate student Kozin A.A.
South Ural State University
Wind potential`s calculation of the village Nepryakhin
(Chelyabinsk region)
The calculation
was carried out in accordance with the draft of the recreation center, which is
located in the village Nepryakhin. To determine the possibility of using wind power plants in
this area it necessary to analyze its wind potential.
For the analysis
of the data were taken from the site www.wunderground.com for
weather station, located at the airport "Balandino", Chelyabinsk. Since this weather station is located in
a wind zone Nepryahino obtained values of wind speed can be used
for further calculations.
Average wind speed
according to the annual observations:
1.
In 2009 - 3.74
m/s;
2.
In 2010 - 3.75
m/s;
3.
In 2011 - 3.7 m/s.
On the basis of annual values
of wind speed shall make an assessment of parameters of the
random variable with Pearson. To do this, set up the
statistical distribution of the sample (Table 1).
Table 1
Wind speed, m / s |
Number of days |
0,0 |
1 |
0,6 |
5 |
0,8 |
13 |
1,4 |
18 |
1,7 |
24 |
2,2 |
36 |
2,8 |
26 |
3,1 |
37 |
3,6 |
50 |
3,9 |
28 |
4,4 |
37 |
5,0 |
19 |
5,3 |
17 |
5,8 |
11 |
6,4 |
16 |
6,7 |
7 |
7,2 |
6 |
7,5 |
6 |
8,1 |
3 |
8,6 |
3 |
8,9 |
2 |
Total: |
365 |
The sample size 365 days.
The scope of the sample8,9 m/s.
Thus, the number of classes
;
9.
the length of the sub-interval
;
.
Lets construct a histogram of
relative frequencies form the following table:
Table 2
Number of interval i |
A partial interval |
The sum of the frequencies |
The relative frequency |
The density of the relative frequency |
1 |
0-1 |
19 |
0,05 |
0,05 |
2 |
1-2 |
42 |
0,12 |
0,12 |
3 |
2-3 |
62 |
0,17 |
0,17 |
4 |
3-4 |
115 |
0,32 |
0,32 |
5 |
4-5 |
56 |
0,15 |
0,15 |
6 |
5-6 |
28 |
0,08 |
0,08 |
7 |
6-7 |
23 |
0,06 |
0,06 |
8 |
7-8 |
12 |
0,03 |
0,03 |
9 |
8-9 |
8 |
0,02 |
0,02 |
We find an unbiased estimate of the expectation, that
is, the sample mean:
;
.
To find unbiased estimates of
the variance, skewness and kurtosis parameters, coefficient of variation, we
construct the table:
Table 3
Number of interval i |
The boundaries of the interval |
Mid-range |
|
ni |
|
|
|
|
|
xi |
xi+1 |
||||||||
1 |
0 |
1 |
0,5 |
-3,2 |
19 |
-60,8 |
194,56 |
-622,59 |
1992,29 |
2 |
1 |
2 |
1,5 |
-2,2 |
42 |
-92,4 |
203,28 |
-447,22 |
983,88 |
3 |
2 |
3 |
2,5 |
-1,2 |
62 |
-74,4 |
89,28 |
-107,14 |
128,56 |
4 |
3 |
4 |
3,5 |
-0,2 |
115 |
-23 |
4,6 |
-0,92 |
0,18 |
5 |
4 |
5 |
4,5 |
0,8 |
56 |
44,8 |
35,84 |
28,67 |
22,94 |
6 |
5 |
6 |
5,5 |
1,8 |
28 |
50,4 |
90,72 |
163,30 |
293,93 |
7 |
6 |
7 |
6,5 |
2,8 |
23 |
64,4 |
180,32 |
504,90 |
1413,71 |
8 |
7 |
8 |
7,5 |
3,8 |
12 |
45,6 |
173,28 |
658,46 |
2502,16 |
9 |
8 |
9 |
8,5 |
4,8 |
8 |
38,4 |
184,32 |
884,74 |
4246,73 |
∑ |
1160,2 |
1067,20 |
11590,39 |
Thus, the
,
.
,
.
,
.
,
.
,
.
,
.
,
.
For the Pearson test the hypothesis of normal distribution of random
variable X - wind speed, it is necessary to calculate the theoretical frequency
, and ,
Set up the following table:
Table 4
№ |
|
|
|
|
|
|
1 |
0 |
1 |
-3,7 |
-2,7 |
-2,07 |
-1,51 |
2 |
1 |
2 |
-2,7 |
-1,7 |
-1,51 |
-0,95 |
3 |
2 |
3 |
-1,7 |
-0,7 |
-0,95 |
-0,39 |
4 |
3 |
4 |
-0,7 |
0,3 |
-0,39 |
0,17 |
5 |
4 |
5 |
0,3 |
1,3 |
0,17 |
0,73 |
6 |
5 |
6 |
1,3 |
2,3 |
0,73 |
1,28 |
7 |
6 |
7 |
2,3 |
3,3 |
1,28 |
1,84 |
8 |
7 |
8 |
3,3 |
4,3 |
1,84 |
2,40 |
9 |
8 |
9 |
4,3 |
5,3 |
2,40 |
2,96 |
Using a table of values of the Laplace function, we obtain:
Table 5
№ |
|
|
|
|
1 |
-0,4808 |
-0,4345 |
0,0463 |
16,8995 |
2 |
-0,4345 |
-0,3289 |
0,1056 |
38,544 |
3 |
-0,3289 |
-0,1517 |
0,1772 |
64,678 |
4 |
-0,1517 |
0,0675 |
0,2192 |
80,008 |
5 |
0,0675 |
0,2673 |
0,1998 |
72,927 |
6 |
0,2673 |
0,3997 |
0,1324 |
48,326 |
7 |
0,3997 |
0,4671 |
0,0674 |
24,601 |
8 |
0,4671 |
0,4918 |
0,0247 |
9,0155 |
9 |
0,4918 |
0,4985 |
0,0067 |
2,4455 |
Intervals containing numerically
small empirical frequencies (ni <20, the intervals 1, 8, 9), should be merged, and
the corresponding frequencies add up.
Thus to the obtain
the following table:
Table 6
i |
|
|
|
|
|
1 |
42 |
38,544 |
3,456 |
11,944 |
0,310 |
2 |
62 |
64,678 |
-2,678 |
7,172 |
0,111 |
3 |
115 |
80,008 |
34,992 |
1224,440 |
15,304 |
4 |
56 |
72,927 |
-16,927 |
286,523 |
3,929 |
5 |
28 |
48,326 |
-20,326 |
413,146 |
8,549 |
6 |
23 |
24,601 |
-1,601 |
2,563 |
0,104 |
7 |
39 |
25,915 |
13,085 |
171,217 |
6,607 |
∑ |
|
38,914 |
In the table we find the critical points of
distribution (0,05; 7), as significance
level adopted , and the number of degrees of
freedom k = 7 – 3 (after the union of
intervals equal to the number 7).
As , there is reason to reject the hypothesis of normal
distribution of the population, but the average wind speed, median and modal
values are in the same range of wind speeds, which is a sign of a
normal distribution
To plot the density of a normal distribution
with parameters and S, complete the following table.
For a normal distribution
with parameters, the
probability density. Using the table of
function values, we obtain:
Table 6
i |
|
|
|
|
|
1 |
0,5 |
-3,2 |
-1,80 |
0,0790 |
0,0444 |
2 |
1,5 |
-2,2 |
-1,24 |
0,1849 |
0,1039 |
3 |
2,5 |
-1,2 |
-0,67 |
0,3870 |
0,2174 |
4 |
3,5 |
-0,2 |
-0,11 |
0,3965 |
0,2228 |
5 |
4,5 |
0,8 |
0,45 |
0,3605 |
0,2025 |
6 |
5,5 |
1,8 |
1,01 |
0,2396 |
0,1346 |
7 |
6,5 |
2,8 |
1,57 |
0,1163 |
0,0653 |
8 |
7,5 |
3,8 |
2,13 |
0,0413 |
0,0232 |
9 |
8,5 |
4,8 |
2,70 |
0,0104 |
0,0058 |
According to the obtained values of a
plot of the probability density
Figure 1 - Graph of the probability density
The confidence interval for , as so we get ty
= 1,960.
Thus, (3,522;
3,888) – confidence interval for .
The confidence interval for we get (1,627; 1,945).
Thus, 95% could be
argued that the random values of wind speed with. Nepryakhin
will be in the range of 3.522 m/c to 3.888 m/c.
These speeds are considered a
minimum for the horizontal-axis wind turbines and their use impractical, but
there are no current vertical-axis wind turbines at such a rate can already
generate electricity, which is the basis for further work on the project supply
of recreation with a group of wind turbines.
Bibliography:
2. Zabeyvorota V.I., Volokhova
K.I. Mathematics in Economics (Elements of mathematical statistics). Textbook.
UrSEI, Chelyabinsk, 1998.
3. Saplin L.A. Research and study
on the use of non-traditional and renewable energy sources in the energy supply
of the Chelyabinsk region. Report on research work. CHGAU, Chelyabinsk, 1998