Физика/8. Молекулярная физика

 ассистент Измайлова Д.И.

 Донецкий Национальный Университет Экономики и Торговли имени  Михаила Туган-Барановского

Необычные свойства графена

 

На сегодняшний день графен самый тонкий материал, известный человечеству, толщиной всего в один атом углерода. Он вошел в учебники по физике и в нашу реальность в 2004 году, когда исследователи из Манчестерского университета Андре Гейм и Константин Новоселов сумели его получить, используя обычную ленту-скотч для последовательного отделения слоев от обычного кристаллического графита, знакомого нам в виде карандашного стержня. Замечателен тот факт, что графеновый лист, помещенный на подложку из оксидированного кремния, можно рассмотреть в хороший оптический микроскоп. И это при его толщине всего в несколько ангстрем (1Å = 10–10 м)!

Популярность графена среди исследователей и инженеров растет день ото дня, поскольку он обладает необычными оптическими, электрическими, механическими и термическими свойствами. Многие эксперты предсказывают в недалеком будущем возможную замену кремниевых транзисторов более экономичными и быстродействующими графеновыми.

Так как графен впервые был получен всего шесть лет назад, то это вполне естественно, что в настоящее время пока еще нет работающих устройств на его основе, хотя список перспективных технологий довольно обширный.

Несмотря на то, что механическое отслоение с помощью скотча позволяет получать графеновые слои высокого качества для фундаментальных исследований, а эпитаксиальный способ выращивания графена может обеспечить наикратчайший путь к электронным микросхемам, химики пытаются получить графен из раствора. В добавление к низкой стоимости и высокой производительности, этот метод открывает дорогу ко многим широко используемым химическим техникам, которые позволили бы внедрять графеновые слои в различные наноструктуры либо интегрировать их с различными материалами для создания нанокомпозитов. Однако при получении графена химическими методами есть некоторые трудности, которые должны быть преодолены: во-первых, необходимо достигнуть полного расслоения графита, помещенного в раствор; во-вторых, сделать так, чтобы отслоенный графен в растворе сохранял форму листа, а не сворачивался и не слипался.

В журнале Nature были опубликованы две статьи независимо работающих научных групп, в которых авторам удалось преодолеть вышеназванные трудности и получить графеновые листы хорошего качества, подвешенные в растворе.

Первая группа ученных — из Стэнфордского университета (Калифорния, США) и Пекинского института физики (Китай) — внедряла серную и азотную кислоты между слоями графита (процесс интеркаляции; см. Graphite intercalation compound), и затем быстро нагревала образец до 1000°C (рис. 3a). Взрывное испарение молекул-интеркалянтов производит тонкие (толщиной в несколько нанометров) графитовые «хлопья», которые содержат множество графеновых слоев. После этого в пространство между графеновыми слоями химически внедряли два вещества — олеум и гидроокись тетрабутиламмония. Обработанный ультразвуком раствор содержал как графит, так и графеновые листы. После этого методом центрифугирования проводили отделение графена.

В тоже время вторая группа ученых — из Дублина, Оксфорда и Кембриджа — предложила другую методику для получения графена из многослойного графита — без использования интеркалянтов. Главное, по словам авторов статьи, использовать «правильные» органические растворители, такие как N-метил-пирролидон. Для получения высококачественного графена важно подобрать такие растворители, чтобы энергия поверхностного взаимодействия между растворителем и графеном была такой же, как для системы графен–графен.

В журнале Science опубликована статья, подписанная межинститутской группой американских ученых под руководством Майкла Кромми, сотрудника отдела материаловедения в Национальной лаборатории имени Лоуренса в Беркли. Ученые сообщают о создании псевдомагнитных полей, намного больших по силе, чем любые магнитные поля, когда-либо получаемые в лабораторных условиях — и все это лишь приложением механического напряжения к листу графена.

В статье ученые экспериментально показали, что тогда, когда графен растягивается с образованием нанопузырей на платиновой подложке, электроны в нем ведут себя так, как если бы они были подвержены действию магнитного поля индукцией свыше 300 тесла — хотя никакое магнитное поле к ним не прикладывалось. Это совершенно новое физическое явление, не имеющее аналогов. Текущий рекорд для полученного в лаборатории традиционным путем постоянного магнитного поля — 85 тесла, выше магниты просто разрушаются сами собой.

В данном случае никакого магнитного поля нет, но электроны все равно ведут себя так, как будто к ним приложено магнитное поле с невероятной индукцией в сотни тесла — в десятки миллионов раз сильнее магнитного поля Земли.

Сама идея появления псевдомагнитных полей при деформации графена была высказана теоретиками совсем недавно — в начале 2010 года испанский физик Франциско Гинеа из Мадридского института материаловедения предсказал, что при растягивании графена по трем кристаллографическим направлениям электроны в нем будут вести себя подобно электронам в сильном магнитном поле. Причиной этого является изменение длины связей между атомами и, следовательно, движения свободных электронов между ними.

В классической физике электроны в магнитном поле двигаются по циклотронным орбитам, имеющим форму окружности. В квантовой механике, однако, циклотронные орбиты квантуются, делясь на дискретные энергетические уровни. Количество электронов на каждом уровне зависит от силы магнитного поля — чем сильнее поле, тем на более высокие уровни «забираются» электроны и тем больше электронов на каждом уровне. Именно это и происходит в деформированном графене, но без магнитного поля.

Это удивительное явление было открыто почти случайно, при исследовании слоев графена на платиновой подложке с помощью сканирующего туннельного микроскопа. Обнаружив аномальные изменения электрического тока в графене.

Микроскопия показала появление на поверхности графена нанопузырей — треугольных деформаций, похожих по форме на маленькие пирамидки высотой от четырех до десяти нанометров. Нарушение плотности электронных состояний было связано именно с ними. Эффект проявляется даже при комнатной температуре.

Данная работа открывает широчайшие перспективы в науке и технологии, обещая множество важнейших практических приложений и фундаментальных научных открытий — и все это благодаря необычным свойствам графена.

Литература:

1.     Xiaolin Li et al. Highly conducting graphene sheets and Langmuir–Blodgett films // Nature Nanotech (2008). V. 3. P. 538–542.

2.     Yenny Hernandez et al. High-yield production of graphene by liquid-phase exfoliation of graphite // Nature Nanotech (2008). V. 3. P. 563–568.

3.      Jannik C. Meyer et al. Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes // NanoLetters (2008), doi: 10.1021/nl801386m.

4.      Andre K. Geim, Philip Kim. Carbon Wonderland // Scientific American (2008). No. 4. P. 90–97. См. также по-русски: Андре Гейм и Филип Ким «Углерод — страна чудес» // «В мире науки» № 7, 2008.

5.     J. Scott Bunch et al. Impermeable Atomic Membranes from Graphene Sheets (доступен полный текст) // NanoLetters. V. 8. No. 8. P. 2458–2462 (2008).