к.т.н И.Л.
Коробова
Тамбовский
государственный технический университет, Россия
Комбинированная
нейронная модель прогнозирования
деформационных
показателей кордных материалов
В последнее время, наряду с известными
методами прогнозирования качественных показателей кордных материалов
(статистическая обработка; физико-математическое описание) применяют нейронные
сети. В работах [1, 2] описаны нейронные модели для прогнозирования качества
кордных материалов. Дальнейшие исследования в данной предметной области привели
к идее разработки комбинированной физико-математической и нейронной модели для
прогнозирования деформационных показателей. Описание деформационного поведения
обеспечивается экспериментально-аналитической математической моделью, а
нейронная сеть описывает зависимость качественных показателей от реологических
параметров, полученных при помощи первой модели.
Схематично математическая модель
определения деформационных показателей представлена на рис. 1.
Рисунок 1. Схема комбинированной нейронной модели
Цель моделирования состоит в определении
параметров нейронной сети для расчета показателей качества. В нашей работе
рассчитывали три показателя: тепловую усадку Nту,
ползучесть Nполз и
модуль NЕ:
,
где i Î {ту, полз, Е}; Fi - оператор нейронной сети; X=[eобр, eнеобр, eэласт] -
вектор параметров деформационного поведения; eобр - обратимые деформации; eнеобр - необратимые деформации; eэласт эластические задержанные деформации.
При этом все виды деформаций определяются
по модели деформационного поведения [3]:
,
где j Î {необр, обр, эласт}; eå - общие деформации; T - температура материала; u - влажность материала; s - внутреннее напряжение в материале; t - время обработки материала в камерах термовытяжки и
термофиксации.
Расчет параметров процесса проводится на
основе дифференциального уравнения теплопроводности и температурно-влажностной
зависимости с учетом температуры обдувающего воздуха (T1, T2) и натяжения материала (P1, P2) в
камерах термовытяжки и термофиксации [4].
По точности расчета комбинированная нейронная модель в
наших примерах оказались близка к физико-математической (погрешность »15%). При этом сложность вычисления значительно
меньше. По сравнению с полиномиальной моделью (ее точность »30%) комбинированная нейронная модель предпочтительнее.
Разработанные
методы экспериментальных работ, инженерных расчетов и прогнозирования качества
кордных материалов могут найти широкое применение в резиновой промышленности.
Удобное для инженерной
практики программное обеспечение позволяет легко выполнять расчеты процессов
обработки кордных материалов непосредственно в промышленных и проектных
организациях и принимать рациональные технологические и проектные решения.
Кроме того,
важной частью современного технологического процесса являются системы
автоматического управления. Особое место должны занимать системы, обеспечивающие
управление изменением качественных показателей. К сожалению, существующие
системы управления для оборудования по обработке кордных материалов достаточно
сложны и не всегда эффективны.
Достижение необходимых
параметров качества обработанных кордных материалов возможно лишь с применением
компьютерных систем управления на основе микропроцессоров, микроконтроллеров и pic-контроллеров.
Основу их организации составляют современные методы, в том числе нейронные сети
и теория нечетких множеств с соответствующим программным обеспечением. При
создании прикладной части программного обеспечения таких систем управления
возможно использование методик, предложенных в настоящей работе.
Литература
1
Korobova I.L., Gatapova N.Z., Konovalov V.I., Kudra T. Opportunities for Using
Fuzzy Systems and Neural Networks to Optimize Quality of Dried Materials with
Complex Rheology // Proc. IDS'2000. Netherrrland, 28-31 Aug., 2000. Amsterdam:
Elsevier, Science, 2000 (Abstracts,
Papers, Report No.400 and CD-ROM).
2 Коновалов В.И., Коробова И.Л., Гатапова
Н.Ц., Нечаев В.М. Использование нейронных сетей и нечетких множеств в
химической технологии // Вестник ТГТУ. 2000. Т.6. № 4. С. 590-610.
3 Коробова И.Л., Гатапова Н.Ц. К описанию
реокинетики при обработке кордшнуров и нитей // Труды ТГТУ. Выпуск 8. Тамбов,
2001. С.50-55.
4 Коновалов В.И., Туголуков Е.Н., Гатапова
Н.Ц. и др. К расчету внутреннего тепло- и массопереноса и кинетики сушки и
нагрева волокнистых материалов // Вестник ТГТУ. 1997. Т.3, № 3. С.224-236.