Phytocenologic relationships in pasture stands for foal and their multifunctionality in marginal conditions.

Maršálek,M., Čermák, B., Klimeš, F., Kobes, M., Lád, F., Frelich, J.: The Agricultural Faculty of South Bohemian University in České Budějovice.

Abstract

Yield, botanic composition and chemical analyses of grass and herbage were measured in seven localities with different altitudes between 250 and 800 metres above sea level. Grass and herbage are the most natural and optimal feedstuff for cattle. Grazing management should notably regulate the pasture composition, i.e. support dominance of soft stoloniserous strains of grasses and decrease occurrence of weed and less value strain of gramineous grasses.

Key words: pasture, foal agrobotanical structure, nutrients,  mouse.

 

  Introduction

. Hence, the role of livestock as an integrated part of the organic production systems and its importance for future development differs considerably between countries and regions in the EU(Klimes et al 2001, Čermák et al 2004, Holoubek,Čermák 2004). .

The pasture nutritional parameters  varied  in depending of agrobotanical structure, type of  fenophase parameters, agrotechnological service with management of  fertiliser, conditions of pasture stands, climate conditions and other conditions. Long time utilisation and management of pasture area can increased of  nutrients parameters and their stability through vegetations.

After pasture cycle the rest of pasture must be to cut or mulch The balance between production yield and nutrients norms for animals colud be with good managewment of pasture area organised (JURŠÍK, TRÁVNÍČEK, DRGÁČ, 2001 cit.Čermák2004). In czech Mountains conditions the pasture sezone is 140-155 days. In opposite Teslík (1996) reported the economical parameters are by near 200 days of pasture sezone. For this condition is early of spring and late of outum the animals transport to the pasture area and ad the nutrients with the conservate feed as silage and concentrate. The aditional of minerals components depend of the evaluation of the feed ration in observed farms.

For the cows withaut milk production  0,7-1 ha of pasture are per 1 cow with calf  by low intensity. For high intensity the 1200-1800 kg live weight per 1 ha can calculated.

 (LOUDA, MRKVIČKA, STÁDNÍK, 2001 cit.Čermák2004).

Material and Methods

In 200-2006 7 different experimental locations were chosen in the Sumava Mountains area between 250 to 900 m. Three farms had dairy cows, 2 farms had beef cattle on pasture, and 2 farms had a combined beef and dairy herd. During summer, all cattle were grazing. Dairy cows were supplemented with concentrate and hay according to their milk production. During winter, the cattle on all farms were fed with silage. The pasture yield, botanic structure of grass, clover and other plants and the quality of animal product were monitored.

The samples of forages were analysed for content of DM, ash and crude protein (CP). Ash-free NDF, ADF and ADL were determined using a Fibertec analyzer (Fibertec System M). NDF was determined according to Van Soest et al. (1991). An overnight pretreatment with a-amylase (A6380, Sigma) at 38 °C according to Ferreira et al. (1983) was followed by addition of sodium sulfite and a heat stable a-amylase (Termamyl, Novo Nordisk, Denmark) during NDF boiling. ADF and ADL were analysed according to Van Soest et al. (1991). CP was analysed according to the Kjeldahl method (AOAC, 1990). Ash was determined after combustion at 525 oC (AOAC, 1990).

Results and discussion

The many hundrets of samples are taken out of different pasture stands. The first part of  samples evaluation is sumarised in grapf 1

 

 Graph 1  The similarity of pasture goups (content of agrobotanical groops – grasses, trefoils, other plants) in observed pasture stands after 4 years of utility of pratotechniques with the pasture in optimal structure  

 

 

 

 

 

 

 

 

 

 

 

OPS

 

 

P 2x / NPK

 

P 3x / NPK

 

P 2x / 0

 

 

P 4x / NPK

P 3x / 0

 

P 4x / 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      0,1    0,2   0,3    0,4    0,5    0,6    0,7    0,8   0,9    1,0 s

Legend  : 

s        =   similarity of richness species, OPS   =    fictive pasture with optimal agrobotanical structure, Pn x   =    number  of pasture cycle per year, NPK  =    fertiliser N+PK/ha

0        =    non fertilized area

 

 

Foal farm deviding in group in different altitude

Group

Level of altitude

farms

I.

Till 250 m.l.m.

ŠCHK Kubišta, hřebčín Equus-Kinský

II.

250 – 300 m.l.m.

Luka-Týn, hřebčín Albertovec, Padělky

III.

300 – 400 m.l.m.

Hřebčín Suchá, ZH Písek

IV.

400 – 500 m.l.m.

ZH Tlumačov

V.

          over 500 m.l.m.

Horní Město-Skály

 

  1. Hřebčín Equus – Kinský, n.v. 206 m
  2. ŠCHK Kubišta,                n. v. 235 m
  3. Padělky,                           n. v. 251 m
  4. Hřebčín Albertovec,        n. v. 260 m
  5. Luka – Týn,                     n. v. 266 m
  6. Hřebčín Suchá,                n. v. 347 m
  7. ZH Písek,                         n.v. 378 m
  8. ZH Tlumačov,                  n. v. 460 m
  9. Horní Město (Skály),       n. v. 675 m

    

 

     The optimum structure of agrobotanical groups could  be: grasses 60-65%, trefoils 20-25%, other plants 10-15%       (Klimeš   et al 2001, Kadlec et al 2002, Čermák et al. 2004).

     For the better understanding of pasture samples  in different nutrients evaluation is the structure of some carbohydrates especially the  spectra of NDF and ADF is necessary to evaluate for feed rations. For the cows after calving is 28% of NDF and 21% of ADF in feed rations recommended.  In the following  tables (1-2) and the average of their parameters  are presents. In graph 4 the original dry matter each samples of analyzed results and predicted method are compared. From this graphs we can see that the data spectra in zone average, minimum and maximum  can find. Each pasture stand are with similar method evaluated (Koukolová et.al.2004).

 

Graph 2.The observation of number of Microcus avalis per 100 m2 by the permanent graslad in Šumava mountains (650-850 m altitude).

L

 

 

M1x/0

 

 

K1x/0

 

 

K2x/0

 

 

K2x/NPK

 

 

P2x/0

 

 

P2x/NPK

 

 

 [n]                      0                             5                                 10                                 15                     20             

                                                                                                                                                                                         

Legend :

L   =    grasslands with out utilization, M  =   mulch, K  =    cut, P   =    pasture

1x; 2x  =  frequency of utilization, NPK   =   fertilized grassland, 0=  with out fertilization grassland, n         =   number of observations of Microtus arvalis per 100 m2

 

 

 

EVALUATION OF QUALITY PASTURE STANDS IN 2005 YEAR

may 2005                                                                                                         Table n.1

 

Sample

Lab.drymatter.

orig.dry matter.

NL

SNL

fet

ash.

CF

ADF

NDF

BNLV

DEK

number

%

%

%

%

%

%

%

%

%

%

MJ/kg

1

87,94

14,65

18,56

12,71

2,64

10,73

20,19

26,05

46,2

47,88

10,45

2

88,18

10,38

18,56

12,71

3,00

11,68

19,23

25,98

38,7

47,53

10,43

3

88,78

14,79

16,50

11,30

2,18

10,45

24,10

32,25

54,61

46,77

10,17

4

88,76

14,25

16,28

11,15

 2,45

10,18

20,45

28,45

44,43

50,64

10,38

5

88,78

13,32

16,36

9,83

3,86

10,81

20,41

26,47

40,68

50,56

10,40

6

88,86

13,33

19,35

13,25

2,32

9,09

21,47

27,96

42,84

47,77

10,58

7

89,38

14,89

16,81

11,51

2,34

11,45

20,27

28,64

41,76

49,13

10,25

8

88,66

14,29

16,11

11,03

2,39

10,03

20,81

27,97

41,19

50,66

10,37

9

88,62

16,83

26,18

17,93

3,17

10,76

18,95

22,75

37,53

40,94

10,89

10

88,74

17,44

20,22

13,85

3,29

11,96

16,57

25,31

36,51

47,96

10,62

11

88,26

23,83

19,70

13,49

2,73

7,36

19,63

25,15

49,49

50,58

10,92

12

89,24

25,49

14,01

9,59

 1,92

7,44

23,43

30,19

58,15

53,20

10,40

13

87,32

24,94

20,35

13,93

2,38

11,26

15,34

21,48

29,03

50,67

10,65

14

88,60

26,58

18,77

12,85

2,09

10,69

19,74

26,92

35,96

48,71

10,42

17

87,80

18,07

15,15

10,37

2,47

12,55

21,36

27,84

39,63

48,47

10,02

18

88,88

29,23

11,13

7,62

2,05

10,71

26,10

32,85

53,55

50,01

9,80

19

88,36

23,25

13,97

9,56

2,68

10,95

21,91

27,21

44,04

50,49

10,16

20

88,40

24,55

14,26

9,76

2,46

9,91

21,71

29,52

46,42

51,66

10,27

21

88,76

19,88

18,34

12,56

2,62

12,03

16,67

23,29

38,15

50,34

10,44

22

88,36

18,22

19,22

13,16

2,54

10,29

16,52

22,41

34,19

51,43

10,68

23

88,20

22,21

18,96

12,98

2,71

9,14

20,58

24,66

45,8

48,61

10,64

24

89,26

23,28

14,22

9,74

2,66

10,50

21,64

27,61

37,42

50,98

10,23

Data are in 100% dry matter.

 

 

August 2005                                                                                                             Table n.2

 

Sample

Lab.drymatter.

orig.dry matter.

NL

DNL

fet

ash.

CF

ADF

NDF

BNLV

DEK

number

%

%

%

%

%

%

%

%

%

%

MJ/kg

1

90,12

23,51

12,25

8,17

2,01

11,11

24,58

31,31

48,21

50,05

9,60

2

89,66

22,42

12,52

8,35

1,73

11,71

25,10

32,31

48,22

48,94

9,49

3

90,18

28,18

10,33

6,89

1,63

8,98

31,39

36,52

63,33

47,67

9,43

4

90,54

25,87

12,95

8,63

1,88

9,63

28,82

34,03

59,72

46,72

9,61

5

89,80

24,49

13,92

9,28

2,36

9,82

23,65

31,05

42,72

50,25

9,90

6

89,82

29,94

11,47

7,65

2,04

8,39

30,98

37,77

55,66

47,12

9,62

7

90,16

43,98

8,14

5,42

1,62

7,05

32,19

40,59

64,11

51,00

9,52

8

89,74

26,51

9,89

6,59

1,85

7,39

33,20

42,53

57,82

47,67

9,55

9

89,46

22,36

11,64

7,76

1,84

11,73

25,04

33,76

48,12

49,75

9,47

10

89,90

21,79

10,51

7,01

2,12

9,96

25,97

31,4

53,61

51,44

9,61

11

90,66

41,84

8,23

5,48

2,49

5,93

27,54

36,62

65,18

55,81

9,94

12

90,20

41,60

7,71

5,14

1,96

5,41

29,15

36,15

65,15

55,77

9,85

13

89,66

29,88

15,67

10,45

1,92

9,92

24,17

29,27

47,51

48,32

9,88

14

90,06

15,01

14,79

9,86

2,28

9,74

24,82

32,29

44,85

48,37

9,89

15

90,90

28,41

11,82

7,88

2,02

8,53

27,17

32,27

56,42

50,46

9,76

16

90,38

20,66

12,96

8,64

2,10

9,13

27,05

32,39

55,10

48,76

9,76

17

89,46

17,89

13,93

9,29

2,38

12,07

22,22

29,39

38,14

49,40

9,71

18

90,00

22,50

9,80

6,53

2,36

11,53

25,23

29,17

48,88

51,08

9,47

19

89,49

20,34

10,5

7,00

2,49

13,00

22,92

27,11

40,06

51,09

9,44

20

90,08

24,02

11,21

7,47

2,55

10,35

25,58

31,84

51,86

50,31

9,67

21

89,40

14,11

13,04

8,69

2,46

12,68

22,42

29,57

38,10

49,4

9,60

22

89,28

17,85

12,69

8,46

2,41

11,76

19,08

28,89

40,01

54,06

9,82

23

89,64

23,89

11,12

7,41

2,13

9,23

26,32

35,32

55,11

51,20

9,71

24

89,80

22,45

12,35

8,23

2,43

8,13

27,84

32,07

57,23

49,25

9,86

Data are in 100% dry matter.

The data from the stands in 2006 year  has the some differences as in the year 2005. This results in graphs numer 1-4 are presents. Low representation of clover was noticed when surveying the quality of grazing lands almost at all grazing land grazed by colts in 2005 and 2006. Only localities from number 5 to 8 showed to have optimal ratio of clover, grass and herbs representation.

  Graph n.1

 

      

 

 

 

 

 

 

 

 

   Graph n.2

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                      

  Graph n.3

                                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 Graph n.4

Table 4. Basic statistical evaluation , F-test a T-test of growth characteristic in comparison with  growinght standard ST4 in differt

Alitude m.over.m.

n

awerage

sx

Var, coeficient Vk

Min

Max

F-test

t-test

  1. Do 250

44

3,93

1,25

31,8

2

6

 

 

9,559+++

1:2+++

1:5+++

2:3+++

2:4+++

3:5+

4:5+

2. 250-300

36

5,58

1,32

23,65

1

7

3. 300-400

85

4,15

1,45

34,94

2

7

  4. 400-500

47

4,19

1,59

38,01

1

6

5. 500-700

44

5,02

1,62

32,18

2

7

 

Breeding stations located above 600 m altitude above the sea level had higher content of dry matter. More significant differences among the grazing lands in different altitudes were not revealed. The tendency of healthier foal in high altitude was observed.

 

 

 

 

 

Conclusions

The EU-Regulation provides a framework ensuring that the living conditions for organic livestock are better than the minimum conditions in conventional systems, but this does not necessarily ensure a higher level of animal health and food safety. The most important source of variation is the farm management. The implementation of a high animal health status often requires additional skills and the use of additional resources (labour, time, investments etc.). Limited availability of these resources and structural problems impede efforts to improve the status of animal health at the farm level. When faced with conflicting aims and resource limitations farmers do not always give the highest priority to animal health. This can have a negative impact on food quality and safety. Hence, there is a need for preventive strategies that are closely related to the specific farm systems to improve animal health and food safety in organic systems throughout EU. In Czech republic the  area of permanent grasslands rapidly increased. It is in opposite with the decreased number of animals. The other field of pasture utilisation could be find. The multifunctional utilisation for wild animals, agroturism and sports is not  rather evalued.

Low representation of clover was noticed when surveying the quality of grazing lands almost at all grazing land grazed by colts in 2005. Only localities from number 5 to 8 showed to have optimal ratio of clover, grass and herbs representation. Breeding stations located above 600 m above the sea level had higher content of dry matter. More significant differences among the grazing lands in different altitudes were not revealed.

 

 

   Authors.

Čermák, B. a kol.: Vliv kvality krmiv na produkci a zdravotní nezávadnost mléka a masa.

Vědecká publikace pro IVV MZe, UZPI Praha, 2004, 138 s.

Holoubek,J., Čermák, B.: Využití trvalých travních porostů v chovech skotu (Utilize of permanent grassland in livistock breeding). In: Sborník z konference Proteiny 2004, MZLU v Brně, Brno, 2004, s. 177 – 181

Klimeš,  F., Střeleček,  F., Čermák, B., Hrabě, F., Tetter, M.: Methodological Aspects in the Study of Species Richness and Diversity in Species of   Grasslands.  Collection of Scientific Papers, Faculty of Agriculture in Č. Budějovice, Series for Crop Sciences, 18., 2001 (2): 91– 98

Koukolová, V., Kobes, M., Homolka, P., Čermák, B.: Stanovení degradovatelnosti NDF paastevní píce IN VITRO metodami a jejich ověření metodou IN SITU na kanylovaných kravách. In:Sborník anotací z mezinárodní konference XXI. Dni živočíšnej fyziologie Košice 23-24.9.2004, s. 51.

 

 

This project by MSM 6007665806 was supported.

Contact adress:Doc.Ing.B.Čermák,CSc.  e-mail: cermak@zf.jcu.cz