Технические науки/6. Электротехника и радиоэлектроника

Кравчик Ю.С.

Одесская национальная Академия связи им. А.С.Попова, соискатель, ЧП, Украина

ПРИМЕНЕНИЕ 3D-ПРЕОБРАЗОВАНИЙ ДЛЯ ПОЛУЧЕНИЯ РЕШЕНИЙ СИСТЕМЫ УРАВНЕНИЙ МАКСВЕЛЛА

Данная статья относится к электродинамике. Традиционные методы точного расчета электромагнитного поля посредством преобразования систем координат [1] позволяют рассчитать поле в ограниченном числе случаев, а приближенные методы не всегда отвечают техническим потребностям расчета электромагнитных устройств и систем. Поэтому цель данной статьи – предложить метод получения 3-D-решений системы уравнений Максвелла на примерах получения решений вблизи ребристой структуры и поверхности 2-го порядка.

Будем искать такие 3-D-преобразования, которые преобразуют решение системы уравнений Максвелла в решение.

Запишем систему уравнений Максвелла [1,2] в системе единиц СИ  в следующем виде:

      

Где:  EX,EY,EZ,HX,HY,HZ – соответственно, составляющие электрического и магнитного полей, α и β, соответственно, электрический и магнитный потенциалы [2], x,y,z и t  - пространственные и временная переменные. Следует учитывать, что представления магнитных и электрических потенциалов α и β могут меняться ролями вследствие симметрии перестановки между магнитным и электрическим полями [6]. В системе единиц Хэвисайда электрическая  и магнитная проницаемости равны единице: ε=μ=1

 Рассмотрим следующую задачу. Пусть задана функция - решение F(x,y,z,t) системы уравнений Максвелла (1)-(8) и некоторое преобразование f системы координат:

где: x′,y′,z и t новые пространственные и временная координаты.

Тогда при каких условиях функция F(f) так же является решением системы уравнений Максвелла.

Или, другими словами, какие функции преобразования системы координат переводят решение системы уравнений Максвелла  в решение, или, сокращенно, являются допустимыми преобразованиями.

В [2] предложены М-числа - вариант 8-мерного обобщения комплексных чисел. Их свойства выбраны так, что условия дифференцирования функций над ними (М-функций) тождественны системе уравнений Максвелла. Рассмотрим М-фнкции [2] как аналог комплексных функций.  В случае комплексных функций допустимыми преобразованиями являются преобразования, которые сами удовлетворяют условиям Коши-Римана [4]. Рассуждая по аналогии, следует предположить, что в случае М-функций допустимыми преобразованиями являются функции, удовлетворяющие условиям дифференцирования, или уравнениям Максвелла. Следовательно, решения системы уравнений Максвелла с учетом двулистности значений следует рассматривать как преобразования системы координат следующего вида:

  (10)

где: X, ́Y, ́Z, ́T ́- пространственные и временная переменные листа  Λ ́ большой переменной [2], λ ́- лист малой переменной.

Следовательно, решением рассматриваемой задачи будет следующее утверждение. Сложная функция F(f) принадлежит области решений системы уравнений Максвелла, если F(λ) и f(λ)  принадлежат области решений системы уравнений Максвелла. Другим словами, сложная функция принадлежит области решений системы уравнений Максвелла, если ее составляющие функции принадлежат той же области.

Справедливость этого утверждения проверяется непосредственной проверкой в системе единиц Хэвисайда. Действительно, проверим сохранение первого уравнения (1) системы уравнений Максвелла. Его компоненты (1) при преобразовании (9) изменятся следующим образом:

 

Сумма составляющих (11)-(14) даст следующий результат:

вследствие уравнения (7) системы уравнений Максвелла (1)-(8). Остальные составляющие дадут нулевую сумму вследствие условий (1)-(8). Например, следующие составляющие:

образуют нулевую сумму.  Действительно,  вследствие (2), и  вследствие (3), т.к. ротор образует ненулевую комбинацию для электромагнитного поля. Если ротор образует нулевую комбинацию, то такая компонента не принадлежит электромагнитному полю, выпадает из области решений системы уравнений Максвелла и не участвует в электромагнитной индукции [3].

Аналогично проверяется выполнение других уравнений системы уравнений Максвелла (1)-(8).

Доказанное свойство решений системы уравнений Максвелла используем для получения новых решений. Рассмотрим это на следующих примерах.

ПРИМЕР ИСПОЛЬЗОВАНИЯ КОМПЛЕКСНЫХ ФУНКЦИЙ ДЛЯ ПОЛУЧЕНИЯ 3-D РЕШЕНИЙ В ПОПЕРЕЧНО-ОДНОРОДНЫХ СТРУКТУТАХ

Ранее в работе  [3] рассматривались примеры получения Т- решений системы уравнений Максвелла с использованием комплексных функций. Рассмотрим примеры получения существенно трехмерных решений с использованием комплексных функций как частного и упрощенного случая 3-D-преобразования.

Пусть задана комплексная функция f(x,y), удовлетворяющая условиям Коши-Римана [4], отображающая некоторую область (x,y) на верхнюю полуплоскость комплексной плоскости (x ́,y ́):

   

Экспоненциальная функция exp(λ) М-аргумента может рассматриваться как функция, отображающая верхнее полупространство в область 4-куба значений [2]. Функция exp(λ) определяет множество решений в виде электрических и магнитных функций для прямоугольного резонатора [1,2], а так же для верхнего полупространства над проводящей плоскостью вследствие выполнения граничных условий [1]. Поэтому сложная функция так же будет решением системы уравнений Максвелла для некоторой поперечно-однородной структуры, сечение которой определяет функция  f(x,y). При этом функция f(x,y) отображает некоторую область на верхнюю полуплокость комплексной плоскости.

В качестве примера рассмотрим комплексную функцию f- -1(x,y), преобразующую верхнюю полуплоскость комплексного пространства на полуплоскость с установленными на ней равноотстоящими ребрами [4,5]. Обратную ей комплексную функцию f-(x,y)представим в следующем виде:

 

где: a – действительный параметр задачи, i - мнимая единица.

Функцию f-(x,y) (18) будем трактовать не как Т-поле [5], а как функцию, описывающую преобразование (x,y) →(x',y') [4].

Тогда следующая  функция будет 3-D-решением для исходной области:

Где: i,j,k – кватернионные мнимые единицы, I – коммутативная мнимая единица [2].

Функцию arcos(x+iy) нельзя представить в конечном виде в виде суммы действительной и мнимой составляющей. Поэтому для ее вычисления воспользуемся разложением в степенной ряд с тремя членами [5]:

После этого определим решение для данной задачи, представив экспоненциальную функцию через аналоги формулы Эйлера [2]:

где: x' и y' определяются из (20), z'=z,t'=t.

Составляющие действительная и мнимые компоненты (21) представляют компоненты электрического и магнитного полей и потенциалов.

Полный спектр решений в виде электрических и магнитных функций определяется численно после введения размерностных и амплитудных коэффициентов в формулу (21) и подстановки ее компонент в систему уравнений Максвелла, записанную в системе единиц СИ (1)-(8), где  ε и μ не равны единице.

Граничные условия для функции (19) запишем в следующем виде аналогично [1]:

Где: mX, mY ,mZ – целочисленные параметы, определяющие границы ячеек, на которые  разбивается область с ребрами и проводящей плоскостью. В каждой ячейке присутствует спектр электрических и магнитных функций,  аналогичных прямоугольному резонатору с учетом их преобразования по выражению (18). В случае представления функции arccos  в ряд с тремя членами, получим следующее уравнение:

 В случае прямоугольного резонатора, это прямоугольные клетки, которыми режется верхнее полупространство на ячейки прямоугольных резонаторов. В случае (20)-(23) – это некоторые цилиндрические поверхности. Заметим без доказательства, что решение (18)-(21) вместе с решением [5] образуют между собой ортогональную систему функций аналогично тому, как поперечная однородная волна и решение для прямоугольного резонатора являются ортогональными и собственными функциями в полупространстве над плоской проводящей поверхностью.

Данный пример показывает возможность получения 3-D решений с использованием двумерных преобразований.

 

РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ МАКСВЕЛЛА ВБЛИЗИ ПОВЕРХНОСТИ ЦЕЛОГО ПОРЯДКА

Определение компонент электромагнитного поля в конечном виде возможно только в простейших случаях. В более сложных случаях представление электромагнитного поля в виде координатных составляющих требует разложения в степенной ряд. Поэтому из всех членов ряда  рассмотрим линейную и квадратичную составляющие разложения и выясним их характеристики как полевого решения и геометрического преобразования системы координат.

Рассмотрим следующую линейную М – функцию f(λ):

где: a,b,c и dдействительные параметры.

Подстановка составляющих электромагнитного поля (24) в систему уравнений Максвелла  (1)-(8) в системе единиц Хэвисайда, как нетрудно проверить, дает тождество. Такое поле имеет следующий физический смысл. Электрическая составляющая E (24) и электрический потенциал α линейно изменяются во времени и пространстве. Магнитная составляющая H перпендикулярна электрической и постоянна во времени.

Рассмотрим (24) как системы преобразования координат двух видов. Первый вариант λ→λ' преобразования по (10) и (24) соответствует повороту координатных осей:

 Второй вариант λ→Λ' преобразования по (10) и (24) соответствует переходу к движущейся системе координат с соответствующим изменением масштаба временной координаты и соответствует преобразованию Лоренца [2]:

Следующей  рассмотрим вариант квадратичной функции:

Компоненты функции (27) записаны в системе единиц Хэвисайда. Рассмотрим функцию (27) как представление электромагнитного поля. Для перехода в систему единиц СИ необходимо ввести размерностные и амплитудные коэффициенты с учетом соответствия составляющих функции и составляющих электромагнитного поля [2]:

Где: nX , nY, nZ ,ω размерностные действительные коэффициенты, HX0, HY0, HZ0, EX0, EY0, EZ0амплитудные действительные коэффициенты.

Подстановка составляющих (28) в систему уравнений Максвелла, записанную в системе единиц СИ (1)-(8) дает следующие соотношения:

Из (29) получим следующие соотношения:

 

Рассмотрим функцию (27) как два варианта преобразования системы координат. Первый из них соответствует преобразованию листа малой переменной на лист малой переменной [2]:

Второй вариант преобразования соответствует преобразованию листа малой переменной на  лист большой переменной [2]:

 

На основе квадратичных преобразований (31) и (32) возможно получение  новых решений системы уравнений Максвелла. В качестве примера запишем показательные функции:

Представляя показательные функции (33) и (34) аналогами формулы Эйлера [2] (21), с учетом значений штрихованных переменных (31) и (32), получим покомпонентное представление функций F1 и F2. В этом случае компоненты электромагнитного поля записываются в конечном разделенном виде. Свойства решений (33) и (34) (и (28)) требуют отдельного рассмотрения. Здесь заметим, что эти решения не стационарны – все компоненты и характеристики смещаются во времени. Определение граничных условий для функций (33) и (34) позволяет определить поверхности выполненных граничных условий [5], вдоль которых возможно выкладывание проводящих поверхностей. Граничные условия определяются  из следующих уравнений для функции (33):

 

  

Для функции (34) граничные условия будут аналогичными с учетом (32):

Как видно из (35) и (36), поверхности будут смещаться во времени, т.к. зависят от t как от параметра. Следовательно, граничные условия, выполненные в один момент времени, не будут выполняться  через некоторое время. Поэтому выполнение граничных условий можно считать выполненными только условно (приближенными) или в фиксированный момент времени. Через некоторый промежуток времени граничные условия могут выполниться снова. Вследствие этого электромагнитное поле при выполнении граничных условий будет распространяться в  таком волноводе с малым затуханием, а при их нарушении – с большим. Это должно приводить к амплитудной модуляции электромагнитного поля.

Описанное решение позволяет точно рассчитать электромагнитное поле вблизи поверхности 2-го порядка.

Аналогично выше изложенному, можно получить покомпонентное представление других функций целой степени n, например, вида:

 

Такие решения хотя и достаточно громоздки, но могут быть получены в конечном виде.

 

Описанный метод получения 3-D-решений путем использования сложных М-функций и преобразований систем координат позволяет получать новые преобразования и решения системы уравнений Максвелла и расширяет возможности их точного расчета. В том случае, когда эти преобразования обратимы, повторное применение  прямого и обратного преобразования эквивалентно единичному преобразованию. В этом случае такое преобразование образует группу преобразований [5]. Так как предложенные преобразования почти всегда обратимы, то они увеличивают число собственных групповых преобразований системы уравнений Максвелла. Это позволяет неограниченно расширять число точных решений системы уравнений Максвелла.

 

 

Литература:

1.     Никольский Н.Н. Электродинамика и распространение радиоволн. – М.: Наука, 1978. – 543 с.

2.     Кравчик Ю.С. Обобщение комплексных чисел и их применение в электродинамике // Праці УНДІРТ. – 2003. - №4(36).

3.     Кравчик Ю.С. Метод введения неэлектромагнитных полей в электромагнитную теорию Максвелла // ПраціУНДІРТ. – 2002. - №1(29). – С 52 – 57.

4.     Сидоров Ю.В., Федорюк М.В., Шабунин М.И. Лекции по теории функций комплексного переменного. – М.: Наука, 1982. – 488 с.

5.     Кравчик Ю. С. Применение группового двумерного преобразования для получения Т- решений однородной системы уравнений Максвелла // Mat. The science: theory and practice 2005. V.26. Eng. Science. Pb. House. Praga, 2005 – с 31-34.

6.     Фушич В.И., Никитин Ф.Г. Симметрия уравнений Максвелла. – Киев: Наукова думка, 1983. – 200 с.