Physics / 2. Solid
State Physics
Chkhartishvili
L.S.*, ** and Darchiashvili M.D.**
* Georgian Technical University, Georgia
** Ferdinand Tavadze Institute of Metallurgy and Materials Science,
Georgia
Binding energies and electron energy
levels
of impurity atoms in crystallographic
voids
1.
Introduction
Doping is known to be the main method of tuning the
electronic properties of semiconductors. In conventional crystalline semiconductors,
like Ge, Si, GaAs etc, atoms constituting a substance are substituted with foreign
dopants. In β-rhombohedral boron (β-B), which is a promising
high-temperature material, the attempt to make the substitutional doping with
non-metallic elements faces an obstacle. The ideal
structure of β‑B is the electron-deficient and, therefore, unstable.
Real crystals are stabilized by a large number of point structural defects –
vacancies and boron atoms in irregular sites – determining electronic properties of the undoped material. For this
reason, β‑B is almost insensitive to doping: to achieve a desired
effect it is necessary to introduce impurities with concentrations comparable
with that of intrinsic defects. But, any attempt to replace such high number of
boron atoms in their regular sites leads to the lattice destruction and / or
formation of the phase inclusions. But, in β‑B a fundamentally different
mechanism of doping can be released. Its crystalline structure is characterized
by the different types of crystallographic voids accommodating metal atoms with
very slight structural distortions. Corresponding mechanism of doping has
several advantages compared with the traditional one: (1) Metallic impurities in crystallographic voids of β‑B
can be introduced to the very high concentrations, up to a several atomic percents;
(2) Because of the diversity of void types, such kind of doping can
simultaneously affect various physical properties of the material; (3) Since
atoms of various chemical elements in different ways can be distributed between
the voids of different types, a similar effect can be achieved by double,
ternary, etc doping of β‑B combining several dopants.
Nowadays, many metallic elements are found experimentally
in different crystallographic voids of the β‑B lattice. Let only list
papers determining some of their structural, ground-state and electronic
parameters: 3Li [1‑5], 12Mg [6‑8], 13Al
[1, 9, 10], 21Sc [11‑13], 22Ti [11, 12, 14‑16],
23V [2, 3, 11, 12, 17‑27], 24Cr [11, 12, 22, 25, 28],
25Mn [11, 12, 29‑36], 26Fe [10‑12, 14, 16, 20,
22‑24, 30, 33, 34, 37‑46], 27Co [11, 12, 16, 24, 25, 38,
47], 28Ni [3, 11, 12, 16, 18, 22, 30, 38, 44, 48‑53], 29Cu
[1, 3, 9, 11, 12, 19, 20, 22, 30, 54], 40Zr [11, 12, 18, 19, 25, 30,
55‑57], 41Nb [56], 72Hf [11, 18, 55, 56], 73Ta
[11, 13, 56, 58‑60], 75Re [44, 56, 57, 61]. Because the real crystals of β‑B contain a very
high concentration of intrinsic point structural defects, pure
samples are characterized by the p-type hopping conduction mechanism. A typical
picture of the metal-doping influence on the electrical conduction in β‑B
is as follows. These impurities occupying the crystallographic voids, freely supply
the boron lattice with electrons from their outer valence shells. Initially,
these electrons fill the deep levels related with dangled bonds at the
intrinsic defects. This leads to an increase in the concentration of the empty centers
of localization of hopping holes. As a result the p-type hopping conduction increases.
But, when more than half of the centers are filled with electrons concentration
of the localized holes begins to decrease and increasing in the p-type
conductivity is replaced by its decreasing. At a certain level of doping, it
comes the inversion of the carrier’s charge sign – further increase in the
concentration of metallic impurities yields the increase in the n-type conductivity,
which is realized by the hopping of localized electrons between the impurity
centers and / or delocalized electrons transmitted from these centers
in the β‑B conduction band.
There is a lack of theoretical studies on in-void doping
mechanism, which largely hinders the purposeful design of the high-temperature
semiconductor materials based on the metals solid solutions of β‑B. This paper is an attempt to partially fill this
gap. It is the first part of the study focused on general theoretical basis
developed for obtaining the binding energies and electron energy levels of
impurities localized in the crystallographic voids. In future, we intend to
calculate these parameters for various metal atoms doped in different
crystallographic voids in β‑B lattice. Suggested approach is based on the quasi-classical-type
method [62], which was successfully utilized for calculating the ground-state
parameters and electron energy spectra of boron nitrides BN [63‑73], the
compounds of boron, boron nanotubes [74, 75], as well as for treatment of boron
isotopic effects [76‑79]. Quasi-classical parameters of the constituent atoms
should be assumed as given as in [80] we have pre-calculated and tabulated
their values.
2.
Bonding energy
Let,
where
Here
Under the equilibrium conditions, the resultant force
acting on the impurity atom from the surrounding atoms has to be zero. This
means that to determine the value of binding energy of the impurity atom in
different crystallographic voids one should find extremes of the function
One should not think that the calculated average bond length
corresponding to an extreme should coincide with the value actually realized in
the crystal. It is likely the equilibrium bond length, to which the subsystem
tends. Based on its value one can judge whether the crystal will expand or in
contrary compress by the doping. In the crystal, there is established certain average
bond length, for which the loss (gain) in the binding energy of the impurity
with the lattice associated with the deviation of the cluster (including the
impurity-atom) from a stable (unstable) equilibrium is compensated by the gain
(loss) in the deformation energy of the rest of the crystal as a result of
doping. Therefore, the binding energy values at its extremes may be well used to estimate the binding energy of an
impurity atom with the crystal as a whole. The fact is that by definition, the
latter is the difference between the total energies of doped and, consequently,
a locally deformed crystal and pure ideal crystal.
3.
Electron energy levels
Determination
of the electron energy levels of various dopant elements accommodated in voids
of various types in crystalline lattice needs elaboration of the special model of
the impurity center. Situation when a dopant atom embedded in crystallographic
void is surrounded by the atoms already bonded together essentially differs
from that when the lattice constituent atom tightly bonded with neighbors is
substituted with a foreign atom. So, standard models are useless for our
purposes.
Taking
into account that impurity atom placed inside the crystallographic void only
slightly affects the ideal crystalline structure, within the first
approximation the outer valence-shell electron’s energy levels for neutral and
negatively charged impurity atom can be found from the electron ionization
potential
The
depth of the donor level
where
So to estimate the donor level location it is necessary to
calculate only one quantity,
Here
The value of
As
for the depth of the acceptor level
where
Consequently, to estimate the acceptor level it is
necessary to calculate
4. Concluding remarks
The relative error of the quasi-classical method itself
when it determines the quantities of dimension of energy does not exceed a few
percents. However, the model used to describe a cluster of the impurity and
surrounding lattice atoms is based on simplifications, which will serve as
additional sources of calculation errors: (1) Even in the perfect crystal,
atoms surrounding a void are located in non-equivalent crystallographic positions
at different distances from the geometric center; (2) In some cases, the location
of the void’s geometric center is poorly defined and consequently the concept
of the average length of bonds is poorly defined too; (3) Because of vacancies
in real crystals the number of neighboring lattice atoms are not well defined;
(4) Introducing of an impurity atom in the void deforms the adjacent region of
the crystal – such local deformation itself may contribute to the
multiplication of vacancies; (5) The role of the nearest neighbors of impurity
atoms in real crystals can play not only atoms in regular lattice sites, but
also some irregular sites, which are partially occupied by host atoms, as well
as other impurity atoms located in neighboring voids or lattice sites; (6) The
nearest neighbors of the impurity atom are counted according to some criterion (see
below: the Lundström criterion) and therefore their number is arbitrary to
some extent; (7) Model neglects the interaction of an impurity atom with other
(i.e., next to the nearest neighbors) atoms of the crystal.
Traditionally, according to the Lundström criterion [31],
atoms in the β‑B lattice are considered to be the nearest neighbors
if the corresponding bond length does not exceed 2.80 Å. This value
is at 0.42 Å larger than the mean radius 2.38 Å of the
largest voids (of E type) in β‑B. By reason of this, as a possible
lower limit of the M - B bond length we can
use 1.65 Å, which is approximately by the same magnitude smaller
than the mean radius 2.10 Å of the smallest voids (of A(2) type). Note
that optimization
of the boron icosahedron B12 geometry carried out by semi-empirical
version of the molecular-orbital-method leads to the equilibrium binding energy
value of 4.2 eV / at [4], while another estimate obtained
theoretically within the local-density-approximation using the factorizable
potentials and plane-wave basis set is of 6.8 eV / at [81].
Since the icosahedron is the main structural motif of the β‑B
structure it follows that the value of binding energy of an impurity atom
heavier than boron with the boron lattice of ~ 10 eV / at
and more seems to be quite reasonable.
For determination of an impurity level position in the β-B
band gap within the frames of proposed model, it is necessary to know the band
gap and electron work function of this material. The b-B band gap width is known to be of
References:
1. H. Matsuda, T. Nakayama, K. Kimura, H. Ino,
Y. Murakami, H. Suematsu, I. Higashi. Jpn. J. Appl. Phys. Ser.,
1994, 10, 39.
2. M. Terauchi, Y. Kawamata, M. Tanaka, H. Matsuda,
K. Kimura. J. Solid State Chem., 1997, 133, 152.
3. K. Kimura, M. Takeda,
M. Fujimori, R. Tamura, H. Matsuda, R. Schmechel,
H. Werheit. J. Solid State Chem., 1997, 133, 302.
4. M. Fujimori,
K. Kimura. J. Solid State Chem., 1997, 133, 310.
5. K. Shirai,
H. Dekura, A. Masago. J. Phys.: Conf. Ser., 2009, 176, 012001.
6. C. L. Beckel, I. A. Howard. Mat. Sci. Res. Soc. Symp. Proc., 1987, 97, 51.
7. K. Soga, A. Oguri, S. Araake, M. Terauchi,
A. Fujiwara, K. Kimura. J. Solid State Chem., 2004, 177, 498.
8. V. Adasch, K.‑U. Hess, Th. Ludwig, N. Vojteer,
H. Hillebrecht. J. Solid State Chem., 2006, 179,
2900.
9. I. Higashi, M. Kobayashi, Yu. Akagawa,
K. Kobayashi, J. Bernahard. AIP Conf. Proc., 1991, 231, 224.
10. T. Nakayama, H. Matsuda, K. Kimura, H. Ino. J. Solid State Chem., 1997, 133, 342.
11. O. A. Golikiva, A. S. Umarov. Bull. Acad. Sci. Uzb.
SSR (Ser. Phys. & Math.), 1982, 2,
37.
12. G. A. Slack, J. H. Rosolowski, C. Hejna,
M. Garbauskas, J. S. Kasper. In: Proc. 9th Int. Symp. Boron,
Borides & Rel. Comp., 1987, Duisburg: UDG, 132.
13. G. A. Slack, C. I. Hejna, M. Garbauskas,
J. S. Kasper. J. Solid State
Chem., 1988, 76, 64.
14. J. N. Tsikaridze, T. Z. Mukhraneli,
G. A. Mazmishvili. J. Less-Comm. Met., 1986, 117, 181.
15. G. Sh. Darsavelidze, G. V. Tsagareishvili,
O. A. Tsagareishvili, M. E. Antadze, N. A. Zoidze,
T. V. Dzigrashvili, E. R. Kutelia. In: Proc. 9th Int. Symp.
Boron, Borides & Rel. Comp., 1987, Duisburg: UDG, 341.
16. O. Tsagareishvili,
G. Darsavelidze, D. Gabunia, M. Darchiasvili. In: Boron
Based Solids. 2011, Trivandrum: Research Signpost, 31.
17. F. N. Tavadze, G. V. Tsagareishvili,
D. L. Gabunia, A. G. Khvedelidze, G. M. Dugladze,
N. M. Zhghenti. In: Investigation of Materials for New Techniques.
1971, Tbilisi: Metsniereba, 67.
18. D. L. Gabunia, K. P. Tsomaia,
F. N. Tavadze. In: Boron – Production, Structure, and Properties.
1974, Moscow: Nauka, 97.
19. G. A. Slack, J. H. Rosolowsky,
M. L. Miller. In: Advanced Energy Systems – Their Role in Our Future,
4. 1984, San Francisco: HH, 2244.
20. G. Sh. Darsavelidze, O. A. Tsagareishvili,
T. V. Eterashvili, V. Sh. Metreveli,
G. F. Tavadze, D. I. Khomeriki. J. Less-Comm. Met., 1986, 117, 189.
21. J. Wong, G. A. Slack. J. Solid State Chem., 1986, 61,
203.
22. T. Lundström. In: Proc. 9th Int. Symp. Boron, Borides &
Rel. Comp., 1987, Duisburg: UDG, 55.
23. H. Werheit, R. Schmechel, K. Kimura, R. Tamura,
T. Lundström. J. Solid State Chem., 1997, 133, 160.
24. R. Schmechel, H. Werheit. J.
Solid State Chem., 1997, 133, 335.
25. T. Nakayama, J. Shimizu, K. Kimura. J. Solid State
Chem., 2000, 154, 13.
26. Y. Sakairi, M. Takeda, H. Matsuda, K. Kimura,
K. Edagawa. J. Solid State Chem., 2000, 154, 307.
27. M. Yamaguchi,
Y. Ohishi, S. Hosoi, K. Soga, K. Kimura. J. Phys.: Conf.
Ser., 2009, 176, 012027.
28. D. W. Bullet. AIP Conf. Proc., 1991, 231, 21.
29. W. Klein. Elect. Technol., 1970, 3, 259.
30. S. Andersson, B. Callmer. J. Solid State Chem., 1974, 10,
219.
31. T. Lundström. AIP
Conf. Proc., 1986, 140, 19.
32. H. Werheit. In: Proc. 9th Int. Symp. Boron, Borides & Rel.
Comp., 1987, Duisburg: UDG, 142.
33. H. Haupt, H. Werheit, T. Lundström,
I. Higashi. In: Proc. 9th Int. Symp. Boron, Borides & Rel. Comp.,
1987, Duisburg: UDG, 277.
34. G. P. Tsiskarishvili, T. Lundström,
L. Lundgren, G. V. Tsagareishvili,
O. A. Tsagareishvili, F. N. Tavadze. In: Proc. 9th Int.
Symp. Boron, Borides & Rel. Comp., 1987, Duisburg: UDG, 353.
35. G. P. Tsiskarishvili, T. Lundström,
L. Lundgren, G. V. Tsagareishvili, D. N. Tsikaridze,
F. N. Tavadze. J. Less-Comm.
Met., 1989, 147, 41.
36. V. Shmugarov, G. P. Tsiskarishvili,
G. V. Tsagareishvili, T. Lundström. AIP Conf. Proc., 1991, 231, 245.
37. B. Callmer, T. Lundström. J. Solid. State Chem., 1976, 17, 165.
38. J. M. Dusseau, J. L. Robert, B. Armas,
C. Combescure. J. Less-Comm. Met., 1981, 82, 137.
39. H. Werheit, K. de Groot, W. Malkemper,
T. Lundström. J. Less-Comm. Met., 1981, 82, 163.
40. D. L. Gabunia, T. Sh. Badzagua,
M. V. Vlasova, N. G. Kakazei. In: Proc. 9th Int. Symp.
Boron, Borides & Rel. Comp., 1987, Duisburg: UDG, 355.
41. O. A. Golikova, G. M. Klimashin,
V. V. Kutasov, A. Tadzhiev. In: Proc. 9th Int. Symp. Boron,
Borides & Rel. Comp., 1987, Duisburg: UDG, 375.
42. G. P. Tsiskarishvili, T. Lundström,
L. Lundgren, G. V. Tsagareishvili,
O. A. Tsagareishvili, F. N. Tavadze. J. Less-Comm. Met., 1988, 142, 91.
43. U. Kuhlmann, H. Werheit, T. Dose,
T. Lundström. AIP Conf. Proc., 1991, 231, 340.
44. O. A. Golikova, M. M. Kazanin,
V. V. Kutasov. Jpn. J. Appl. Phys. Ser., 1994, 10, 54.
45. M. Antadze, Z. Zoidze, D. Gabunia,
O. Tsagareishvili, D. Lezhava, G. Darsavelidze. J. Solid State
Chem., 2000, 154, 188.
46.
G. Sh. Darsavelidze, Z. N. Zoidze, L. D. Gabunia,
M. D. Darchiashvili, O. A. Tsagareishvili,
D. N. Tsikaridze, D. L. Gabunia. In: Proc. 2nd Int. Boron
Symp. 2004, Eskişehir: OGU, 177.
47.
M. Darchiashvili, L. Chkhartishvili, G. Darsavelidze,
O. Tsagareishvili, D. Gabunia. In: Proc. 4th Int. Boron Symp. 2009,
Eskişehir: OGU, 171.
48. U. A. Arifov, G. V. Panteleeva,
R. Kh. Karimov. In: Boron – Production, Structure, and Properties.
1974, Moscow: Nauka, 100.
49. G. V. Panteleeva, R. Kh. Karimov. Inorg. Mat.,
1975, 11, 1325.
50. T. Lundström, L.‑E. Tergenius, J. Higashi. Z. Kristallogr., 1984, 167, 235.
51. J. A. Avlokhashvili, G. F. Tavadze,
L. V. Pleshcheva. In: Proc. 9th Int. Symp. Boron, Borides & Rel.
Comp., 1987, Duisburg: UDG, 343.
52. G. Darsavelidze, D. Gabunia, D. Lezhava, Z. Zoidze,
L. Kurashvili. Bull. Georg. Acad.
Sci., 1997, 156, 435.
53. G. Darsavelidze, O. Tsagareishvili, D. Gabunia,
Z. Zoidze, L. Gabunia. In: Proc.
1st Int. Boron Symp. Kütahya: DU, 2002, 55.
54. J. Wong, G. A. Slack. In: Proc. In: 9th Int. Symp.
Boron, Borides & Rel. Comp., 1987, Duisburg: UDG, 268.
55. O. A. Golikova, V. K. Zaitsev,
A. V. Petrov, L. S. Stil’bans, E. N. Tkalenko.
Semicond., 1972, 6, 1724.
56. A. J. Crespo, L.‑E. Tergenius,
T. Lundström. J. Less-Comm.
Met., 1981, 77, 147.
57. G. Darsavelidze, D. Gabunia, O. Tsagareishvili,
Z. Zoidze, M. Antadze, J. Tsikaridze, E. Kutelia. J. Solid
State Chem., 2004, 177, 605.
58. O. A. Golikova, M. M. Usmanova,
V. M. Orlov, A. S. Umarov, T. Khomidov, Z. Mirzhazonov.
Bull. Acad. Sci. Uzb. SSR (Ser. Phys. & Math.), 1981, 3, 51.
59. O. A. Golikova, G. V. Tsagereishvili,
M. M. Usmanova, T. Khomidov, D. L. Gabunia,
A. S. Umarov, Z. Mirzhazonov. Bull. Acad. Sci. Uzb. SSR (Ser.
Phys. & Math.), 1981, 5, 88.
60. D. L. Gabunia, A. S. Umarov,
M. M. Usmanova. Inorg. Mat., 1981, 17, 252.
61. G. Darsavelidze, M. Antadze, G. Tavadze,
O. Tsagareishvili, A. Khvedelidze, J. Tsikaridze. AIP Conf.
Proc., 1991, 231, 606.
62.
L. Chkhartishvili. Quasi-Classical Theory of Substance Ground-State. 2004,
Tbilisi: GTU.
63. L. Chkhartishvili, D. Lezhava,
O. Tsagareishvili. J.Solid State
Chem., 2000, 154, 148.
64. L. Chkhartishvili. In: Proc. 1st Int. Boron Symp. 2002,
Kütahya: DU, 139.
65. L. Chkhartishvili. J. Solid State Chem., 2004, 177,
395.
66. L. Chkhartishvili. In: Proc. 2nd Int. Boron Symp. 2004,
Eskişehir: OGU, 165.
67. L. S. Chkhartishvili. Phys. Solid State, 2004, 46,
2126.
68. L. S. Chkhartishvili. Phys. Solid State, 2006, 48,
846.
69. L. Chkhartishvili. Mat. Sci.: Ind. J., 2006, 2,
18.
70. L. Chkhartishvili. Proc. TSU (Phys.), 2006, 40,
130.
71. L. S. Chkhartishvili.
Mat. Sci. Nanostr., 2009, 1, 33.
72. L. Chkhartishvili,
I. Murusidze. Mat. Sci. & Appl., 2010, 1, 223.
73. L. Chkhartishvili,
T. Berberashvili, I. Murusidze. In: Physics, Chemistry, and Applications
of Nanostructures. 2011, Singapore: World
Scientific, 126.
74. L. Chkhartishvili.
J. Phys.: Conf. Ser., 2009, 176,
012013.
75. L. Chkhartishvili.
In: Proc. 4th Int. Boron Symp. 2009, Eskişehir: OGU, 153.
76. L. S. Chkhartishvili,
D. L. Gabunia, O. A. Tsagareishvili. Inorg. Mat., 2007, 43, 594.
77. L. S. Chkhartishvili,
D. L. Gabunia, O. A. Tsagareishvili. Powd. Metall. &
Met. Cer., 2008, 47, 616.
78. D. Gabunia, O. Tsagareishvili, L. Chkhartishvili,
L. Gabunia. J. Phys.: Conf. Ser., 2009, 176, 012022.
79. L. Chkhartishvili.
Tr. Inorg. Chem., 2009, 11, 105.
80. L. Chkhartishvili,
T. Berberashvili. J. Electromagn.
Anal. & Appl., 2010, 2,
4, 205.
81. L. Kleinman. AIP
Conf. Proc., 1991, 231, 13.
82.
H. Weheit, F. Kummer. J. Phys.: Conf. Ser., 2010, 176, 012020.
83. L. Apker, E. Taft, J. Dickey. Phys. Rev., 1948, 74, 1462.
84. B. Seroczyńska–Wojas. Phys. Stat. Sol. A, 1975, 30, K73.
85. A. N. Arsen’eva–Gejl’, A. A. Berezin,
E. B. Mel’nikova. Phys. Solid State, 1975, 17, 2448.
86. A. A. Berezin, N. N. Trunov. Phys. Solid State,
1977, 19, 1223.
87. E. I. Adirovich, L. M. Gol’dshtejn. Phys. Solid
State, 1967, 9, 1258.
88. E. R. Kutelia, O. G. Dzimtseishvili,
T. A. Dzigrashvili, D. M. Tsivtsivadze,
P. D. Kervalishvili. J. Less-Comm. Met., 1986, 117, 283.
89. V. S. Fomenko. Emission Properties of Materials (Handbook).
1981, Kiev: Naukova dumka.
90. Ed. R. C. Weast. CRC Handbook of Chemistry and Physics.
1988, Boca Raton: CRC Press.