Математика/Математичне моделювання
Лаврухіна О.І., Івахненко Н.М.
Донецький національний
університет економіки і торгівлі
імені Михайла
Туган-Барановського, Україна
Розвиток імітаційного
моделювання в економіці
Перехід до ринкової економіки невід'ємний від процесів
планування, регулювання, управління і прогнозування виробничих і технологічних
процесів. У цьому зв'язку актуальні розробка і застосування
економіко-математичних методів і моделей для вирішення виникаючих
виробничо-господарських завдань, визначення та вибору варіантів економічного
розвитку на перспективу, забезпечення оптимального розподілу ресурсів для
виконання окремих комплексів робіт і т.п.
Видатний
італійський фізик і астроном, один із засновників точного природознавства
Галілео Галілей (1564-1642) говорив, що «книга природи написана мовою
математики». Майже двісті років тому родоначальник німецької класичної
філософії Іммануїл Кант (1742-1804) стверджував, що «у всякій науці стільки
істини, скільки в ній математики». Нарешті, ще через сто п'ятдесят років,
практично вже в наш час, німецький математик і логік Давид Гільберт (1862-1943)
констатував: «Математика - основа всього точного природознавства».
Наведені
висловлювання великих учених дають уявлення про роль і значення математики як у
науково-теоретичної, так і предметно-практичної діяльності фахівців.
Математичне
моделювання - це теоретико-експериментальний метод пізнавально-творчої
діяльності, метод дослідження і пояснення явищ, процесів і систем
(об'єктів-оригіналів) на основі створення нових об'єктів - математичних
моделей.
Шлях математичного моделювання економічних процесів і
послідовного встановлення логічних причинно-наслідкових зв'язків для
забезпечення можливості спостереження, контролю та управління ними є найбільш
ефективний засіб для вирішення різних проблем.
При використанні економіко-математичних методів підходи
до прогнозування чітко сформульовані і можуть бути відтворені іншими особами,
які неминуче сформують такий самий прогноз. Якщо при застосуванні різних
експертних методів структура причинно-наслідкових зв’язків, також може бути різна, то при використанні
економіко-математичних методів структура моделей встановлюється і перевіряється
експериментально, в умовах, які піддаються об’єктивному спостереженню і виміру.
Сучасні тенденції у сфері імітаційного моделювання пов’язані з розвитком проблемно-орієнтованих систем,
створенням вбудованих засобів для інтеграції моделей у єдиний модельний
комплекс. Технологічний рівень сучасних систем моделювання характеризується
великим вибором базових концепцій формалізації та структуризації систем, що
моделюються, розвиненими графічними інтерфейсами та анімаційним висновком
результатів. Імітаційні системи мають засоби для передачі інформації з баз
даних або мають доступ до процедурних мов, що дозволяє легко виконувати
обчислення, пов’язані з автоматизованою оптимізацією тощо.
Мета дослідження – розглянути проблеми моделювання
економічних систем із розвиненими динамічними та інформаційними зв’язками.
У сучасних умовах методом моделювання доцільно вибрати
метод комп’ютерного моделювання, оскільки він дозволяє адекватно відобразити
структуру розглянутої складної динамічної системи з урахуванням чинників
невизначеності.
Метод комп’ютерного моделювання забезпечує ітеративний процес
розробки моделі, яка характеризується поступовою концентрацією інформації про
систему за участі експертів.
Таким чином, у сфері сучасних інформаційних технологій
імітаційне моделювання набуває в наукових дослідженнях та практичній діяльності
вагомого значення. За допомогою імітаційного моделювання ефективно вирішуються
найскладніші завдання у сфері стратегічного планування, бізнес-моделювання,
моделювання фінансових проектів, реінжинірингу, інвестиційно-технологічного
проектування.
Методи імітаційного потокового типу відображають реальні
об’єкти у вигляді взаємодії потоків різної природи (інформаційних, фінансових,
матеріальних і людських ресурсів).
В сучасних системах, для дискретного моделювання
використовуються системи, засновані на описі процесів або на мережевих концептах, а для систем, орієнтованих на безперервне моделювання використовуються
моделі й методи системної динаміки.
Більшість систем моделювання мають зручний, графічний
інтерфейс, який легко інтерпретується системними потоковими діаграмами.
У сучасних системах моделювання з’являється інструментарій для створення стратифікованих систем,
за загальним принципом системного моделювання, реалізується в технології
імітаційного моделювання або шляхом створення комплексу взаємозалежних моделей
з розвиненими інформаційними та імпліцитними зв’язками.
Дослідження процесів функціонування сучасної організації
в умовах чинників зовнішнього та внутрішнього середовища, які постійно
змінюються, є актуальним, особливо з погляду взаємозв’язку динамічного,
статичного та структурного аспектів, з одного боку, і розуміння механізмів
адаптації до мінливих умов – з іншого.
Підсумовуючи, можна сказати про те, що при використанні
методів системної динаміки складний процес управління можна звести до
перемінних декількох рівнів і здатності цих рівнів регулювати темпами. Управління
темпами або потоками відбувається за допомогою обчислення поточних алгебраїчних
виражень із використанням набору вбудованих функцій. Таке структурне управління
дає можливість моделювати поведінку будь-якої складної системи з регулюванням
позитивних і негативних зворотних зв’язків, дозволяє вирішити аналітичні
проблеми багатопланового розвитку та універсального способу оцінки рівня
невизначеності.
Література:
1.
Лисенко Н.О.
Застосування методів прогнозування при формуванні стратегічних альтернатив//Актуальні проблеми економіки. – 2008. №4(№82), с.165
2.
Шелобаев СИ.
Математические методы и модели в экономике, финансах,бизнесе: Учеб. пособие для
вузов. - М.: Юнити-Дана, 2001.- 367 с.
3.
Математические
методы и модели в коммерческой деятельности: Учебник. — 2-е изд., перераб. и
доп. — М.: Финансы и статистика, 2005. — 616с.
4.
О.В. Рудинська,
О.А. Мартинюк Пріорітетні напрямки економічного моделювання в банківській
сфері//Актуальні проблеми економіки. – 2009. №6(96), с. 294-298
5.
З.М.
Соколовська, О.А. Клепікова Моделювання фінансових потоків страхових компаній//Актуальні проблеми економіки. – 2008, №5(83), с. 238-239