ИСПОЛЬЗОВАНИЕ МЕТОДА ВАРИАНТНОГО МОДЕЛИРОВАНИЯ
ЭКОНОМИКИ ОРГАНИЗАЦИЙ
Селимханов М.С. аспирант
Московского государственного университета технологий и управления им К.Г.
Разумовского
Построенная автором данной работы модель,
которая существенным образом отличается от базовой как методами ее создания,
составом, этапами и последовательностью процесса осуществления, так и
сравнением результатов, выбрана двумя вариантами.
Адекватная модель может использоваться для
проверки результатов предполагаемых управленческих решений и различных
альтернатив развития. Применение модели в сфере государственного управления
экономикой АПК возможно практически на всех уровнях. Так, уже при анализе
вербального характеристики выявляются отдельные логические противоречия
алгоритмов функционирования системы, которые можно оперативно устранить. При
построении модели в результате идентификации и уточнения этих связей
конкретизируется вербальные параметры и
могут быть определены оперативные меры по улучшению функционирования
управляющей системы. Диаграмма потоков, уровней и математическое описание
модели, которые строятся на основе ДПСС (диаграммы причинно-следственных
связей), вербальных характеристик и
вариантов принятых решений, часто вызывают необходимость корректировок и
уточнений, которые могут быть оперативно устранены и реализованы [3].
Процесс построения адаптивной методики
государственного управления экономикой АПК автором исследования разделен на три
этапа [2, 4]:
1. Логическое выявление причин и
тенденций, оказавших влияние на эффективность государственного воздействия,
отражены в модели справа. На этом этапе осуществляется выбор и сравнение
эффективности предлагаемых вариантов, выбор наиболее реальных для реализации.
2. Разработка адаптивной модели на основе
создания диаграмм причинно-следственных связей, определение их контуров,
разработка переменных уравнений; перевод диаграммы потоков информации в
математическую форму, выведение уравнений равновесия и динамики моделей.
3. Верификация модели, т.е. проверка ее на
возможность реального функционирования, воздействие модели на результативность
решений, назначение ответственных, контроль реализации, анализ эффективности.
В.А. Баринов и др. рекомендуют разработанную
ими модель использовать для обратного моделирования, т.е. моделирование от
заданного состояния в будущем к настоящему [1]. Воспользуемся данным методом
моделирования государственного регулирования экономики АПК.
Реализуя этот подход можно определить,
какими должны быть показатели функционирования системы сейчас для достижения
заданного состояния в будущем и какие направления должны быть изменены в
будущем, что и в каком направлении должно быть изменено. Естественно, что
уравнения можно использовать при обратном моделировании определенных элементов
и контуров положительной и отрицательной обратной связи. Поведение контура
положительной обратной связи при прямом моделировании описывается уравнениями:
; (1)
. (2)
При прямом моделировании состояние системы
в момент К определяется состоянием в
предыдущий момент J. При обратном моделировании состояние системы в
момент К должно определяться
состоянием в будущий момент времени L. Учитывая это, а также то, что моделирование
осуществляется от будущего к настоящему, необходимо заменить индекс JK индексом KJ и KL на LK. При этом
для параметров, имеющих один индекс, он не меняется. Тогда из первого уравнения
следует:
, (3)
а из двух последующих уравнений, в которых заменим
также индексы J и K на K и L соответственно, получаем:
;
.
(4)
Для контура отрицательной обратной связи:
; (5)
. (6)
Меняя, как и в предыдущем случае, индексы JK и KL на RL и LK
соответственно, уравнение 7 запишем, как:
, (7)
а из уравнений 6 и 7, заменив индексы J и K на K и L соответственно, получим:
;
, (8)
где, LEV.X – уровень
и номер уравнения, описывающего динамику уровня;
Индекс X соответствует
моменту времени, для которого принимается
значение уровня X+J, K, L;
Значение уровня в настоящий момент времени
K
равно его значению в предыдущий момент J плюс (или минус) изменение уровня за период от
момента J до момента K.
KL –
значение темпа потока на следующий период времени;
RT –
темп потока;
DT –
действие потока на протяжении выбранного временного интервала, или шаг
моделирования;
L –
расстояние между интервалом времени;
J –
момент времени, когда принимаются значение в ситуации K;
где LEV.K –
величина уровня в момент K;
LEV.J – величина уровня в момент J;
RT.JK – темп потока, вливающегося в уровень в течение
интервала DT (от момента J до момента K);
C –
константа пропорциональности;
RT.JK – темп, действующий на протяжении времени от J до
K;
GL –
цель организации;
где T – временная постоянная.
Из уравнения 8 видно, что обратное
моделирование имеет особенности для контура отрицательной обратной связи.
Прежде всего, чтобы получить траекторию движения от будущего к настоящему,
следует выполнить следующее условие LEV.J ≠ GL , так как в противном случае RT = 0
всегда. Если вспомнить аналитический вид уравнения для контура отрицательной
обратной связи, то это вполне объяснимо, поскольку теоретически LEV никогда
не достигнет значения GL. Вторая особенность связана со знаменателем . Рассмотрев различные комбинации C и DT и проведя
для каждого случая прямое моделирование контура отрицательной обратной связи,
можно выявить пять областей значений DT, определяющих характер поведения контура.
При (или при ) траектория поведения модели – непрерывная, монотонно
стремящаяся к цели кривая.
При (или при ) траектория поведения модели имеет вид затухающих по
амплитуде колебаний, стремящихся к цели. Это свидетельствует о том, что модель
обладает большой чувствительностью, но она устойчива в смысле достижения цели.
При обратное
моделирование невозможно без применения специальных методик, а траектория
поведения прямой модели представляет собой ступеньку, соответствующую
мгновенному достижению цели.
При траектория
поведения прямой модели имеет вид постоянных величин по амплитуде колебаний, т.е. модель неустойчива в смысле
достижения цели.
При траектория
поведения представляет собой возрастающие по амплитуде колебания, т.е. модель
неустойчивой в полном смысле [1].
Таким образом, можно сделать вывод, что
концепция и реструктуризация государственного регулирования экономики могут
осуществляться двумя путями:
традиционным, с учетом тенденций и
закономерностей развития и обоснования нового управленческого решения, реализация
которого при определении ответственных исполнителей и контроля за ходом
выполнения мероприятий или стратегии, становится реально достижимой;
с помощью математической модели,
позволяющей определять контуры причинно-следственных связей, приведших к
снижению уровня, построения диаграмм потоков информации, создания и верификации
разработанной модели.
Сопоставление полученных результатов
позволит выявить возможные основные риски, чтобы выбрать оптимальный путь развития, избежать всевозможные
конфликты в обществе, обеспечить повышение жизненного уровня, основных слоев
населения, обеспечить внутренний рынок конкурентоспособной продукцией АПК и
осуществить поиск направлений продвижения ее на международный рынок.
Библиография
1. Баринов В.А. и др.
Теория систем и системного анализа в управлении организациями. Справочник. Под
ред. В.Н. Волковой и А.А. Емельянова. – М.: Финансы и статистика, 2006. – 848
с.
2.
Рябова Т.Ф., Куликов
И.М., Минаева Е.В. Глобальная экономика. Энциклопедия. – М.: «Финансы и статистика», 2011.
3.
Федотов А.В.
Прогнозирование с использованием имитационных динамических моделей. – Л.: ЛПИ,
1980.
4.
Форрестер Дж. Мировая
динамика. / Дж. Форрестер. – М.: Наука, 1978.