Analysis of Underground Gas Storages

 

by Askeraliev T. and Kadyrov O.

 

Kazakh National Technical University after K.I.Satpaev

 

Republic of Kazakhstan, Almaty, KazNTU

November 23, 2011

 

 

       The most essential type of gas storage is in underground reservoirs. There are three principal types — depleted gas reservoirs, aquifer reservoirs and salt cavern reservoirs (several reconditioned mines are also in use as gas storage facilities). Each of these types has distinct physical and economic characteristics which govern the suitability of a particular type of storage type for a given application. Two of the most important characteristics of an underground storage reservoir are its capability to hold natural gas for future use and the rate at which gas inventory can be withdrawn–its deliverability rate.

        Gas storage is principally used to meet load variations. It is also used for a variety of secondary purposes, including:

-maintaining contractual balance. Shippers use stored gas to maintain the volume they deliver to the pipeline system and the volume they withdraw. Without access to such storage facilities, any imbalance situation would result in a hefty penalty.

-insuring against any unforeseen accidents. Gas storage can be used as an insurance that may affect either production or delivery of natural gas. These may include natural factors such as hurricanes, or malfunction of production or distribution systems.

-meeting regulatory obligations. Gas storage ensures to some extent the reliability of gas supply to the consumer at the lowest cost, as required by the regulatory body. This is why the regulatory body is monitors storage inventory levels.

-offsetting changes in natural gas demands. Gas storage facilities are gaining more importance due changes in natural gas demands. First, traditional supplies that once met the winter peak demand are now unable to keep pace. Second, there is a growing summer peak demand on natural gas, due to electric generation via gas fired power plants[1].

       The most important and common form of underground storage consists of depleted gas reservoirs. Depleted reservoirs are those formations that have already been tapped of all their recoverable natural gas. This leaves an underground formation, geologically capable of holding natural gas. In addition, using an already developed reservoir for storage purposes allows the use of the extraction and distribution equipment left over from when the field was productive. Having this extraction network in place reduces the cost of converting a depleted reservoir into a storage facility.

          Depleted reservoirs are also attractive because their geological characteristics are already well known. Of the three types of underground storage, depleted reservoirs, on average, are the cheapest and easiest to develop, operate, and maintain. The factors that determine whether or not a depleted reservoir will make a suitable storage facility are both geographic and geologic. Geographically, depleted reservoirs must be relatively close to consuming regions. They must also be close to transportation infrastructure, including trunk pipelines and distribution systems. While depleted reservoirs are numerous, they are more abundantly available in producing regions. In regions without depleted reservoirs one of the other two storage options is required.

        Geologically, depleted reservoir formations must have high permeability and porosity. The porosity of the formation determines the amount of natural gas that it may hold, while its permeability determines the rate at which natural gas flows through the formation, which in turn determines the rate of injection and withdrawal of working gas. In certain instances, the formation may be stimulated to increase permeability.

          In order to maintain pressure in depleted reservoirs, about 50 percent of the natural gas in the formation must be kept as cushion gas. However, depleted reservoirs, having already been filled with natural gas and hydrocarbons, do not require the injection of what will become physically unrecoverable gas; that gas already exists in the formation.

         Aquifers are underground porous, permeable rock formations that act as natural water reservoirs. However, in certain situations, these water containing formations may be reconditioned and used as natural gas storage facilities. As they are more expensive to develop than depleted reservoirs, these types of storage facilities are usually used only in areas where there are no nearby depleted reservoirs. Traditionally, these facilities are operated with a single winter withdrawal period, although they may be used to meet peak load requirements as well.

        Aquifers are the least desirable and most expensive type of natural gas storage facility for a number of reasons. First, the geological characteristics of aquifer formations are not as thoroughly known, as with depleted reservoirs. A significant amount of time and money goes into discovering the geological characteristics of an aquifer, and determining its suitability as a natural gas storage facility. Seismic testing must be performed; much like is done for the exploration of potential natural gas formations. The area of the formation, the composition and porosity of the formation itself, and the existing formation pressure must all be discovered prior to development of the formation. In addition, the capacity of the reservoir is unknown, and may only be determined once the formation is further developed.

        In order to develop a natural aquifer into an effective natural gas storage facility, all of the associated infrastructure must also be developed. This includes installation of wells, extraction equipment, pipelines, dehydration facilities, and possibly compression equipment. Since aquifers are naturally full of water, in some instances powerful injection equipment must be used, to allow sufficient injection pressure to push down the resident water and replace it with natural gas. While natural gas being stored in aquifers has already undergone all of its processing, upon extraction from water bearing aquifer formation the gas typically requires further dehydration prior to transportation, which requires specialized equipment near the wellhead. Aquifer formations do not have the same natural gas retention capabilities as depleted reservoirs. This means that some of the natural gas that is injected escapes from the formation, and must be gathered and extracted by 'collector' wells, specifically designed to pick up gas that may escape from the primary aquifer formation.

        All of these factors mean that developing an aquifer formation as a storage facility can be time consuming and expensive. In some instances, aquifer development can take 4 years, which is more than twice the time it takes to develop depleted reservoirs as storage facilities. In addition to the increased time and cost of aquifer storage, there are also environmental restrictions to using aquifers as natural gas storage. In the early 1980's the Environmental Protection Agency (EPA) set certain rules and restrictions on the use of aquifers as natural gas storage facilities. These restrictions are intended to reduce the possibility of fresh water contamination.

         Underground salt formations offer another option for natural gas storage. These formations are well suited to natural gas storage in that salt caverns, once formed, allow little injected natural gas to escape from the formation unless specifically extracted. The walls of a salt cavern also have the structural strength of steel, which makes it very resilient against reservoir degradation over the life of the storage facility.

         Essentially, salt caverns are formed out of existing salt deposits. These underground salt deposits may exist in two possible forms: salt domes, and salt beds. Salt domes are thick formations created from natural salt deposits that, over time, leach up through overlying sedimentary layers to form large dome-type structures. They can be as large as a mile in diameter, and 30,000 feet in height. Typically, salt domes used for natural gas storage are between 6,000 and 1,500 feet beneath the surface, although in certain circumstances they can come much closer to the surface. Salt beds are shallower, thinner formations. These formations are usually no more than 1,000 feet in height. Because salt beds are wide, thin formations, once a salt cavern is introduced, they are more prone to deterioration, and may also be more expensive to develop than salt domes.

        Once a suitable salt dome or salt bed deposit is discovered, and deemed suitable for natural gas storage, it is necessary to develop a 'salt cavern' within the formation. Essentially, this consists of using water to dissolve and extract a certain amount of salt from the deposit, leaving a large empty space in the formation. This is done by drilling a well down into the formation, and cycling large amounts of water through the completed well. This water will dissolve some of the salt in the deposit, and be cycled back up the well, leaving a large empty space that the salt used to occupy. This process is known as 'salt cavern leaching'.

Salt cavern leaching is used to create caverns in both types of salt deposits, and can be quite expensive. However, once created, a salt cavern offers an underground natural gas storage vessel with very high deliverability. In addition, cushion gas requirements are the lowest of all three storage types, with salt caverns only requiring about 33 percent of total gas capacity to be used as cushion gas.

         Deliverability from salt caverns is typically much higher than for either aquifers or depleted reservoirs. Therefore natural gas stored in a salt cavern may be more readily (and quickly) withdrawn, and caverns may be replenished with natural gas more quickly than in either of the other types of storage facilities. Moreover, salt caverns can readily begin flowing gas on as little as one hour's notice, which is useful in emergency situations or during unexpected short term demand surges. Salt caverns may also be replenished more quickly than other types of underground storage facilities [2].

         Reflecting the change in focus within the natural gas storage industry during recent years, the largest growth in daily withdrawal capability has been from high-deliverability storage sites, which are mainly salt cavern storage reservoirs. These facilities can cycle their inventories–i.e., completely withdraw and refill working gas (or vice versa)–more rapidly than can other types of storage, a feature more suitable to the flexible operational needs of today's storage users. The increasing influence of high-deliverability storage may affect the significance of inventory

levels.

 

 

 

 

 

 

 

REFERENCES

1 www.ela.doe.gov

2 « New concepts in underground storage of natural gas», pipeline research council international, Inc, March 1966