Маслова С. В.

МГПИ им. М. Е. Евсевьева, каф. методики начального образования

 

Решение задач с помощью систем уравнений

 

В настоящее время изучение системы уравнений и решение задач с их помощью является прерогативой курса алгебры старших классов. В основном система уравнений рассматривается как два или несколько уравнений, в которых одни и те же буквы обозначают одни и те же числа. Приведем примеры некоторых видов задач, решаемых с помощью системы уравнений в курсе алгебры. В итоге решение системы уравнений сводится к решению одного квадратного уравнения. Особо обратим внимание на способ составления самой системы.

1. Задача с геометрическим содержанием: «Гипотенуза прямоугольного треугольника равна 13 см, а его площадь 30 см2. Найти катеты».

Решение: Пусть катеты равны х и у сантиметрам. Используя теорему Пифагора и формулу площади прямоугольного треугольника, условие задачи запишем так:

 

Прибавляя к первому уравнению системы второе, умноженное на 4, получаем:  откуда  или  Так как х и у – положительные числа, то  Из этого уравнения выразим у через х и подставим в одно из уравнений системы, например во второе:  Решим полученное уравнение:

 

Подставляя эти значения в формулу  находим  В обоих случаях один из катетов равен 5 см,  другой 12 см.

Ответ: катеты прямоугольного треугольника равны 5 см и 12 см.

2. Задача с нумерационным содержанием: «При делении двузначного числа на сумму его цифр в частном получается 6, а в остатке 4. При делении этого же числа на произведение его цифр в частном получается 2, а в остатке 16. Найти это число».

Решение: Пусть двузначное число будет записано как 10х+у. Используя правило о взаимодействии компонентов при делении с остатком, условие задачи запишем так:

Раскрыв скобки в первом уравнении, выразим из него значение у:  Подставив значение у в первое уравнение системы, получим квадратное уравнение:  - не удовлетворяет условию задачи.

Подставляя полученное значение в формулу   находим

Ответ: двузначное число 64.

3. Задача на нахождение площади: «Участок прямоугольной формы нужно огородить забором длиной 1 км. Каковы должны быть длина и ширина участка, если его площадь равна 6 га?»

Решение: Пусть длина и ширина участка прямоугольной формы равны х и у метрам. Используя формулы нахождения периметра и площади прямоугольника, а также соотношения 1 км=1000 м и 1 га=10000 м, условие задачи запишем так:

Выразим из второго уравнения значение у:  Подставив значение у в первое уравнение системы, получим квадратное уравнение:

Подставляя полученные значения в формулу

Ответ: длина и ширина участка 300 м и 200 м.

Если старшеклассники по условию задачи составляют систему уравнений, в процессе решения которой не фигурирует квадратное уравнение, то сама задача может быть решена и учащимися младших классов. Единственная программа, взявшая на себя смелость использовать системы уравнений в начальном курсе математики, это система развивающего обучения Л. В. Занкова. Рассмотрим некоторые примеры решения задач с помощью составления системы уравнений из начального курса математики.

1. Задача на движение: «Расстояние между городами 564 км. Навстречу друг другу из городов одновременно вышли поезда и встретились через 6 часов. Скорость одного поезда на 10 км больше скорости другого. Чему равна скорость каждого поезда?»

Решение: Пусть х км/ч - скорость первого поезда, а у км /ч – скорость второго поезда. По условию задачи поезда встретились через 6 часов. Тогда, 6х км - пройдёт до встречи первый поезд, 6у км - пройдёт до встречи второй поезд. Их встреча означает, что суммарно они прошли до встречи путь в 564 км, то есть 6х+6у=564 – первое уравнение.

Скорость первого поезда на 10 км/ч больше скорости второго, то есть, разность между скоростями равняется 10. Получим второе уравнение: х-у=10

В итоге получим систему уравнений:

               

Ответ: 52 км/ч, 42 км/ч.

2. Задача на уравнивание двух совокупностей: «На двух полках 84 книги. Если с одной полки снять 12 книг, то на обоих полках книг станет поровну. Сколько книг станет на каждой полке? А сколько было сначала?»

Решение: Пусть х книг – на первой полке, а у книг - на второй полке. По условию задачи на двух полках суммарно составляют 84 книги, то есть х+у=84 – первое уравнение.

Если с первой полки снять 12 книг, то количество книг на обоих полках будет поровну. Получим второе уравнение: х-12=у.

В итоге получим систему уравнений:

    

    

 (книг) - было на первой полке.

84-48=36 (к.) - было на второй полке.

48-12=36 (к.) - станет на каждой полке.

Ответ: по 36 книг, 48 книг и 36 книг.

3. Задача на предположение: «У мальчика в коллекции есть жуки и пауки – всего 8 штук. Если пересчитать все ноги в коллекции. То их окажется 54. Сколько в коллекции жуков и сколько пауков?»

Решение: Пусть х – количество жуков, а у - количество пауков. Суммарно составляют 8 штук. Получим первое уравнение – х+у=8.

А так как у жука 6 ног, то ног всего будет 6х. У паука 8 ног, то 8у – это всего ног у паука. Суммарно составляют 54.Тогда приходим ко второму уравнению: 6х+8у=54.

В итоге получим систему уравнений:

    

                    

 (паука); 8-3=5(ж.)

Ответ: 5 жуков, 3 паука.

Сравнивая подобные способы решения задач в старших и младших классах, можно говорить об их идентичности. Если способы составления и решения систем уравнений аналогичны, то целесообразно уделять этому материалу как можно больше внимания в процессе изучения математики в начальной школе, и не только в рамках системы развивающего обучения Л. В. Занкова.