ТЕХНИЧЕСКИЕ НАУКИ /12.Автоматизированные
системы управления на производстве.
К.т.н. Кан О.А., ст. преп. Лейзер Л.И.
Карагандинский государственный технический университет, Казахстан
Математическое моделирование алгоритмов обнаружения существенных нестационарностей
в контролируемых процессах
В автоматизированных системах
управления производственными процессами важным является обнаружение отклонений
от нормального хода производства, которые характеризуются существенными
нестационарностями в контролируемых процессах. С этой целью проводилось
моделирование алгоритмов обнаружения существенных нестационарностей в
контролируемых процессах.
Сущность метода заключается
в том, что в качестве основного критерия для обнаружения существенной
нестационарности в процессе x(t) принимается площадь S(t)
отклонения оценки дисперсии случайного процесса.
Если величина площади
отклонения S(t) больше некоторого критического значения ξ,
то принимается решение о наличии существенной нестационарности.
Как видно из
рис.1, вычисление площади S(t) отклонения оценки
дисперсии Di позволяет определить момент
наступления нестационарности в условиях случайных аддитивных помех. Причем площадь отклонения S(t) вычисляется для дисперсии
случайного процесса с момента резкого изменения сглаженного случайного процесса. Решение о начале нестационарности принимается
при условии S(t) > ξ. Величина ξ уточняется в
процессе эксплуатации системы в реальных условиях.
Для решения задач
обнаружения нестационарностей и накопления статистических данных необходимо
вычислять сглаженные значения и дисперсии случайных процессов изменения
контролируемых параметров.
S(t)
Рисунок 1. Обнаружение существенных нестационарностей
Оценку среднего значения можно вычислять с помощью
известного рекуррентного соотношения
, (1)
где .
Выражение (1) позволяет вычислять сглаженное
значение xn в режиме реального времени и приводит
к резкому уменьшению объема памяти ЭВМ.
Для оценки дисперсии без накопления
сумм получено выражение
(2)
Для определения , на плавающем интервале (k,n) получены выражения
, (3)
При моделировании алгоритмов
обнаружения существенных нестационарностей вычислялись оценки среднего значения
и дисперсии по формулам (1), (2), (3). В случае, когда замеры снимаются через равные
промежутки времени (), имеем . При
адаптивной дискретизации контролируемых процессов () необходимо выразить коэффициент для выражений (1), (2)
через .
После ряда аналитических
преобразований получена формула
(4)
Формула
(4) характеризует зависимость коэффициента сглаживания α
от заданной постоянной времени Tcg сглаживания при изменяющемся
интервале времени Δt.
Полученные
результаты позволяют использовать формулы (1), (2), (4) для обнаружения
существенных нестационарностей в случайных контролируемых процессах при
адаптивной дискретизации.
Обнаружение
существенных нестационарностей в контролируемых процессах позволяет установить
отклонения от нормального хода производства и своевременно принять управляющие
воздействия.
Литература:
1. Романенко А.Ф., Сергеев Г.А.
Вопросы прикладного анализа случайных процессов.- М.: Сов.
радио. 1968.- 256с.