Катело Я.Д.

Донецький Національний Університет Економіки і Торгівлі імені Михайла Туган – Барановського,Україна

ПРОБЛЕМЫ ПРИМЕНЕНИЯ МАТЕМАТИЧЕСКИХ МЕТОДОВ В ЭКОНОМИКЕ

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта его "образом" — математической моделью — и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот "третий метод" познания, конструирования, проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях (преимущества теории). В то же время вычислительные (компьютерные, симуляционные, имитационные) эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам (преимущества эксперимента). Неудивительно, что методология математического моделирования бурно развивается, охватывая все новые сферы - от разработки технических систем и управления ими до анализа сложнейших экономических и социальных процессов.Элементы математического моделирования использовались с самого начала появления точных наук, и не случайно, что некоторые методы вычислений носят имена таких корифеев науки, как Ньютон и Эйлер, а слово "алгоритм" происходит от имени средневекового арабского ученого Аль-Хорезми. Второе "рождение" этой методологии пришлось на конец 40-х—начало 50-х годов XX века и было обусловлено по крайней мере двумя причинами. Первая из них — появление ЭВМ (компьютеров), хотя и скромных по нынешним меркам, но тем не менее избавивших ученых от огромной по объему рутинной вычислительной работы. Вторая - беспрецедентный социальный заказ — выполнение национальных программ СССР и США по созданию ракетно-ядерного щита, которые не могли быть реализованы традиционными методами. Математическое моделирование справилось с этой задачей: ядерные взрывы и полеты ракет и спутников были предварительно "осуществлены" в недрах ЭВМ с помощью математических моделей и лишь затем претворены на практике. Этот успех во многом определил дальнейшие достижения методологии, без применения которой в развитых странах ни один крупномасштабный технологический, экологический или экономический проект теперь всерьез не рассматривается (сказанное справедливо и по отношению к некоторым социально-политическим проектам). Сейчас математическое моделирование вступает в третий принципиально важный этап своего развития, "встраиваясь" в структуры так называемого информационного общества. Впечатляющий прогресс средств переработки, передачи и хранения информации отвечает мировым тенденциям к усложнению и взаимному проникновению различных сфер человеческой деятельности. Без владения информационными "ресурсами" нельзя и думать о решении все более укрупняющихся и все более разнообразных проблем, стоящих перед мировым сообществом. Однако информация как таковая зачастую мало что дает для анализа и прогноза, для принятия решений и контроля за их исполнением. Нужны надежные способы переработки информационного "сырья в готовый "продукт", т.е. в точное знание. История методологии математического моделирования убеждает: она может и должна быть интеллектуальным ядром информационных технологий, всего процесса информатизации общества. На первом этапе выбирается (или строится) "эквивалент" объекта, отражающий в математической форме важнейшие его свойства - законы, которым он подчиняется, связи, присущие составляющим его частям, и т.д. Математическая модель (или ее фрагменты) исследуется теоретическими методами, что позволяет получить важные предварительные знания об объекте. Второй этап — выбор (или разработка) алгоритма для реализации модели на компьютере. Модель представляется в форме, удобной для применения численных методов, определяется последовательность вычислительных и логических операций, которые нужно произвести, чтобы найти искомые величины с заданной точностью. Вычислительные алгоритмы должны не искажать основные свойства модели и, следовательно, исходного объекта, быть экономичными и адаптирующимися к особенностям решаемых задач и используемых компьютеров.На третьем этапе создаются программы, "переводящие" модель и алгоритм на доступный компьютеру язык. К ним также предъявляются требования экономичности и адаптивности. Их можно назвать "электронным" эквивалентом изучаемого объекта, уже пригодным для непосредственного испытания на "экспериментальной установке" — компьютере. Создав триаду "модель—алгоритм—программа", исследователь получает в руки универсальный, гибкий и недорогой инструмент, который вначале отлаживается, тестируется в "пробных" вычислительных экспериментах. После того как адекватность (достаточное соответствие) триады исходному объекту удостоверена, с моделью проводятся разнообразные и подробные "опыты", дающие все требуемые качественные и количественные свойства и характеристики объекта. Процесс моделирования сопровождается улучшением и уточнением, по мере необходимости, всех звеньев триады. Рассматривая вопрос шире, напомним, что моделирование присутствует почти во всех видах творческой активности людей различных "специальностей" — исследователей и предпринимателей, политиков и военачальников. Привнесение в эти сферы точного знания помогает ограничить интуитивное умозрительное "моделирование", расширяет поле приложений рациональных методов. Конечно же, математическое моделирование плодотворно лишь при выполнении хорошо известных профессиональных требований: четкая формулировка основных понятий и предположений, апостериорный анализ адекватности используемых моделей, гарантированная точность вычислительных алгоритмов. Решая проблемы информационного общества, было бы наивно уповать только на мощь компьютеров и иных средств информатики. Постоянное совершенствование триады математического моделирования и ее внедрение в современные информационно-моделирующие системы - методологический императив. Лишь его выполнение дает возможность получать так нужную нам высокотехнологичную, конкурентоспособную и разнообразную материальную и интеллектуальную продукцию.

Если же говорить о моделировании систем с участием "человеческого фактора", т.е. трудноформулируемого объекта, то к этим требованиям необходимо добавить аккуратное разграничение математических и житейские терминов, осторожное применение уже готового математического аппарата к изучению явлений и процессов, (предпочтителен путь "от задачи к методу", а не наоборот) и ряд других.