Zdzisław Kosztołowicz

University in Kielce

Poland

 

 

Personality and salaries

 

 

It is known that the globalization notion [Druckner 1985, 1997, Gwiazda 2000, Huntington 1991, 1993, 1995, 1999, Sala 2003a, 2004, 2005a, 2005b, 2007a , Robertson 1992, 1995, Szymański 2001,] has been explored and investigated at many areas such as economy, geography, sociology, psychology, political sciences etc [Barber 1998, 2001, Domański 2001, 2004, Gierańczyk, Stańczyk 2003, Jarczewska-Romaniuk 2004, Kisiel-Łowczyc 2000, Kośmicki 2001, Rembowska 2001, Sala 2003b, 2006a, 2006b, 2006c, 2007b, Zorska 2000, 2001a, 2001b, 2002a 2002b, Yang, 1995, Stiglitz 2004].  But undoubtedly, the main axiom can be formulated as follows:

All globalization processes are made by people and for people.

 According to that we assume that every change in human life is valued by its psychological structure [Reykowski 1971]. Especially these processes, which have influenced on the material status of every human. For simplicity, we take into consideration that this status is equivalent to the people salaries.

In this paper we investigate, on some examples, how we can predict which human factors react on salaries which people earn.

This investigation is based on the method of a statistical reduction. Before further considerations we give a brief description of this method [Bryll1995]. In order to present that one, let us consider n-element system of different elements occurring on a certain background (called region or population map). In this method a given n-elementary population is replaced by another one with a smaller number of elements, say N. At the same time a reduction population to a definite level is carried out. The region K, where the n-elements are arranged is divided into k elementary areas called elementary layers. These layers are grouped into so called fundamentally layers (areas) . Each of these fundamental layer contains the same number of elementary areas (namely u). It is assumed that k is divisible by u. It is obvious that the whole region comprehends  fundamental areas. Thus, the arrangement of n-elements population in the whole region K can be characterized by comparing the arrangement in various fundamental and elementary areas. In order to this we introduce the function , which is defined as the ratio of the number of fundamental areas containing m1 elements in the first elementary area, m2 elements in the second elementary area, …, mu in the u-th elementary area to the number of all fundamental areas. This function is determined by counting directly the elements of the population in particular fundamental layers and, in fact, it gives a full description of arrangement on elementary and fundamental areas. The arrangement defined by function  is compared with the formula which express random arrangement, i.e. the arrangement such that the probability of hitting a given elementary area by a given element is the same for all elements and all elementary areas. So the probability  of hitting one elementary layer by m elements is defined by the formula:

.

Let  be a probability that in one fundamental area there are  elements, in such a way, that i-th elementary layer of given fundamental area contains mi elements for i=1 to u. This probability can be calculated as follows:

 where .

By a reduction of an n-elements population (n>2) to a level N, where N<n, we mean a random selection of n-N elements of this population. The probability  of the event that, after removing n-N elements from n elements, the given fundamental area, which consists of elementary areas containing (before removing) mi elements in i-th elementary area for i=1 to u, turns into a fundamental layer containing Mi elements in i-th elementary areas for i=1 to u, is equal   where .

Summing up along all fundamental areas containing more than Mi elements in i-th elementary area for i=1 to u, we get:


(1)
.

The above formula expresses the probability of the event that after removing n-N elements from the region K, we get the fundamental area, which contains in the i-th elementary area Mi elements for i=1 to u.

It is shown [Garncarek 1987] that the random arrangement of an n-elements of the population reduced to a level N is identical with the random arrangement of an N-elements population. This theorem enables us to compare of arrangements of population of distinct cardinalities, by comparison the random arrangement with the arrangements of the populations reduced to, in our case, level 2.

Let us assume that u=2 i.e. every fundamental area contains exactly 2 elementary areas.

In this case, the algorithm of the count is very simple and indicators, referred in this paper, are only two. First indicator is the concentration coefficient c

(2) ,

the second indicator is the grouping coefficient

 

(3) , where

k is the number of all elementary areas and is a probability of finding fundamentally areas such that it contains mi elements in i elementary area on the population map [Zięba1975].

The sums made in above formulae should be read:

-         in the first formula we take into account only these fundamental areas such that first and the second elementary area contains at least one element,

-         in the second (third) case we take these fundamental areas, where the second (the first) elementary area contains at least two elements.

 

This indicators came from the comparison the  arrangement of reduced population to level 2 and random arrangement.

Interpretations for both indicators are similar:

if concentration coefficient (grouping coefficient) is more than 1 then coexistence elements in elementary area (fundamental area) is not accidental,

if concentration coefficient (grouping coefficient) is equal to 1 then coexistence elements in elementary area (fundamental area) is accidental,

if concentration coefficient (grouping coefficient) is less than 1 then coexistence elements in elementary area (fundamental area) does not occur.

To the end we get the concentrations on population map and information about their essentiality.

On the other hand, we have to give a method of constructing, for any data, a population map. Based on [Kosztołowicz 1999] and [Kosztołowicz 1993] we recall the following procedure.

Assume that we have a set of data value {xi; i=1 to n}. Each value is standardized by the formula:

(4) , where  is a mean value and s is a standard deviation, which are calculated in the following way:

 and .

Then we convert standardized data into T1 scale by formula

(5) yi=10×zi+50, where

10 and 50 are standard deviation and mean value at T1 scale respectively [Kosztołowicz 1999].

These results (calculated inT1 scale) we divide into classes with respect to the rule [Ksztołowicz 1999, Kosztołowicz 1993]:

The subtraction between maximal and minimal results is divided by a natural number (the length of the class), such that the number of classes is no less than 10 and no more than 20.

The lowest result in T1 scale makes the bottom closed class, expressed by a natural number. We obtain the top open class when we add e.g. 5 units of the T1 scale to the bottom one. The classes determine elementary layers.

Next, we join two adjacent elementary areas along the results of increasing classes, assigning to a lower result 1, to a higher 2, that is we form a pair (1,2). These are fundamental areas.

Consequently, by putting the results in appropriate elementary fields being included in fundamental areas, we obtain the relational map.

In this paper, salaries, which are taken into account, are published by Chief Central Statistical Office (GUS, Poland) in “Employment and salaries in National Economy in 2002” and introduced in table 1.

Data giving in table 1 are converted to T1 scale by formula (5)

where zi standardized data of i-th factor for i=1 to 5 in giving province,


Table 1

Employment and salaries in the national economy in 2002

Factor number

Average salaries

Province

DS

K-P

L

LB

Ł

MAŁ

MAZ

O

PODK

PODL

POM

S

SW

W-M

WLP

ZP

1

Government administration

2779,03

2814,19

2748,58

2786,24

2762,71

2732,48

3816,79

2665,25

2660,48

2636,99

2769,27

2740,63

2620,38

2670,07

2878,83

2593,97

2

Autonomy territorial administration

2561,56

2199,35

2248,37

2310,68

2282,77

2486,38

3102,26

2557,37

2240,07

2300,58

2465,33

2700

2272,49

2163,48

2448,06

2523,49

3

Comunes and towns titled to be (na prawach powiatu) administrative district

2734,65

2240,75

2334,23

2398,07

2385,72

2623,63

3289,66

2713,26

2336,69

2413,16

2578,94

2867,72

2366,62

2181,85

2531,32

2618,63

4

Administrative district

1982,27

1981,59

1913,35

1973,26

1925,61

2001,4

2186,21

2065,29

1957,33

1944,6

2017,65

1930,19

1980,51

2012,76

2147,04

2165,17

5

Province

2553,83

2553,83

2467,45

2592,29

2640,07

2626,66

3673,04

2903,04

2445,73

2413,94

2840,15

2720,67

2795,9

2653,5

3208,57

3018,59

 

Factor number

Employment

Province

DS

K-P

L

LB

Ł

MAŁ

MAZ

O

PODK

PODL

POM

S

SW

W-M

WLP

ZP

1

Government administration

11779

6398

7052

5115

9041

10472

43724

3076

7089

4892

8741

13825

3360

4518

10945

7637

2

Autonomy territorial administration

13863

10477

11271

5606

13487

13422

24392

4925

10039

5829

10108

18078

6782

8119

15037

8707

3

Comunes and towns titled to be (na prawach powiatu) administrative district

9983

7896

8141

4119

9699

9983

19511

3457

7052

4174

7328

14382

4588

5846

10790

5990

4

Administrative district

3391

2170

2499

1258

3292

2963

4333

1249

2653

1401

2279

3148

1938

1906

3889

2244

5

Province

489

411

631

229

496

476

548

219

334

254

501

548

256

367

358

473

 

Provinces mark: O-opolskie, LB-lubińskie, PODL-podlaskie, SW-świętokrzyskie, W-M-warmińsko-mazurskie, PODK-podkarpackie, K-P-kujawsko-pomorskie, ZP-zachodniopomorskie, POM-pomorskie, L-lubelskie, Ł-łódzkie, MAŁ-małopolskie, DS-dolnośląskie, WLP-wielkopolskie, S-śląskie, MAZ-mazowieckie.
 

Table 2 A relational map for salaries in particular sectors

Text Box: Classes intervals											
[95;100)											
[90;95)											2
[85;90)										1MAZ	1
[80;85)										2MAZ,3MAZ	2
[75;80)											1
[70;75)										4MAZ,5MAZ	2
[65;70)				4WLP							1
[60;65)			5L		2S,3S						2
[55;60)			5Z-P,5POM	4Ł,4DS,5DS,2WLP	5S						1
[50;55)		4PODK		2Ł,3Ł,5Ł,2MAŁ,3MAŁ,
4MAŁ, 5MAŁ,1DS,2DS,
3DS,1WLP,3WLP	1S,4S						2
[45;50)	1LB, 1PODL	1W-M, 5W-M, 1PODK, 
2PODK, 3PODK, 1K-P, 2K-P, 
3K-P, 4K-P, 5K-P	1Z-P,2Z-P,3Z-P,4Z-P, 
1POM, 2POM, 3POM, 
4POM,1L,2L,3L,4L	1Ł,1MAŁ,5WLP							1
[40;45)		1O,2O,3O,2LB,3LB, 
2PODL,3PODL,1SW,
2SW,3SW,4SW	2W-M,3W-M,4W-M,5PODK								2
[35;40)		4O,5O,4LB,5LB,4PODL,
5PODL,5SW									1
Classes	[198;218)	[218;238)	[238;258)	[258;278)	[278;298)	[298;318)	[318;338)	[338;358)	[358;378)	[378;398)	
Global results											
Province											
i and province mark mean salaries of i feature at a marked province, ex. 1O means salaries of the government administration in Opole province.


 

These results (calculated inT1 scale) we divide into classes with respect to the procedure of constructing the population map.

Put these classes on one side of the rectangular (elementary classes length equal to 5, fundamental classes length equal to 10) (table 2) and the classes of global value on the other side. Global value  is equal the sum of all factors value for every province. The relational map salaries (table 2) for all factors is a basic tool for our considerations.

Using the formula ( ) we get c=1,08.

Coefficient c informs us that agents coexistence in elementary areas is accidental. If c>1 then the coexistence is not accidental. In our case c»1, so the coexistence is accidental.

How do people value his salaries?

To answer this question is needed to recall the notion of personality structure. Among many conceptions of personality we recall the concept of J. Reykowski [Reykowski 1971].

This concept assumes that man is equipped with certain group of psychological features that are related to each other and they constitute the starting point for establishing the relation of an individual and the environment.

One of the famous psychologists R. B. Cattell explored this notion and he distinguished 16 psychological factors [Cattell 1957, Cattell 1961, Cattell 1966]. Table 3 contains these factors description [Sanocki 1978]. Factors, which are related to each other, construct layers (one or more). These layers are based on personality structure. In [Kosztołowicz 1999, Kosztołowicz 2004] is presented a method of a constructing map. This map contains 16 factors, which create layers on this map.

In order to establish the psychological layer we introduce a following procedure [Kosztołowicz 1999, Kosztołowicz 2004]:

-         A group is examined Cattell’s 16 factors personality questionnaire. In this questionnaire every item is associated with personal agent. Every member of this group is assigned the number of scored points for every personality factor (empirical results).

-         Empirical results are converted to T1 scale.

-         The map of personality agents is made in the following manner:

in interval we place the scores in T1 scale, starting from the smallest one to the biggest and at every 5 units we place the areas where the scores drop into.

-         There will be layers created (factors dropping into area of the length of 5).

Essentiality of co-occurrence is investigated by concentration coefficient c and grouping coefficient.

Let us recall one example of such a constructed map. For details see [Kosztołowicz1999].

We take into account two people living in Świętokrzyskie province, working at administration in offices of  the government administration. These people results are presented in table 4.

Table 4

Nb.

Personal

agent

A

B

C

E

F

G

H

I

L

M

N

O

Q1

Q2

Q3

Q4

1

Empirical results

13

11

21

20

24

18

18

14

14

20

14

13

18

8

17

24

Converted

To T1 scale

39,5

57,5

57

59,5

78,6

43,1

60,9

44,2

49,7

63,4

53,8

43,8

60,3

28,1

40,1

62,9

2

Empirical results

18

10

18

13

16

14

9

22

12

12

10

22

7

20

20

12

Converted

To T1 scale

52

51,6

50,8

42,5

51,7

33,4

43,3

69,4

43,1

41,7

42,3

57,4

20,8

63,2

47,9

34,9

 

According to the upper procedure, we construct relational map in order to determinate layers

Table 5

Person nb. 1 and 2 relational map

Classes

Classes interval

Personal agents nb. 1

Personal agents nb. 2

Elementary areas

20

[95,100)

 

 

2

19

[90,95)

 

 

1

18

[85,90)

 

 

2

17

[80,85)

 

 

1

16

[75,80)

F

 

2

15

[70,75)

 

 

1

14

[65,70)

 

I

2

13

[60,65)

H,M,Q1,Q4

Q2,

1

12

[55,60)

B,C,E,

O

2

11

[50,55)

N

A,B,C,F

1

10

[45,50)

 

Q3,

2

9

[40,45)

G,I,L,O,Q3

E,H,L,M,N,

1

8

[35,40)

A,

 

2

7

[30,35)

 

G,Q4

1

6

[25,30)

Q2

 

2

5

[20,25)

 

Q1

1

4

[15,20)

 

 

2

3

[10,15)

 

 

1

2

[5,10)

 

 

2

1

[0,5)

 

 

1

Based on tables 5 and 3 we create personal characteristic giving people. We give such characteristic for person number 1.

Characteristic

Rationalism can tone down emotionality, sociality and irritability, reactivity. Taking this statement into consideration we can say that high intelligence, courage and self-confidence is connected with the lack of hypochondria. The lack of sensibility in reaching the goal with the trust of our own abilities can be also appeared.

Similarly, we can describe man nb.2.

We can characterize this person as inteligent, independent, calm, emotionally stable, mature, caring,     cooperative, friendly, enthusiastic and warm. This layer can be disturbed by self-doubting, apprehensivness and guilt-proning. Consequently he becomes submissive, unsteady, socially timid, threat-sensitive, escaping from uncertain situations, transparent.

 In order to find out which personality factors react on salaries we compare table 5 to 2.

Table 6

Comparison - table 2 to table 5

 

Classes

Classes interval

Personal agents nb. 1

Personal agents nb. 2

Salary

20

[95,100)

 

 

 

19

[90,95)

 

 

 

18

[85,90)

 

 

 

17

[80,85)

 

 

 

16

[75,80)

F

 

 

15

[70,75)

 

 

 

14

[65,70)

 

I

 

13

[60,65)

H,M,Q1,Q4

Q2,

 

12

[55,60)

B,C,E,

O

 

11

[50,55)

N

A,B,C,F

 

10

[45,50)

 

Q3,

 

9

[40,45)

G,I,L,O,Q3

E,H,L,M,N,

1SW

8

[35,40)

A,

 

 

7

[30,35)

 

G,Q4

 

6

[25,30)

Q2

 

 

5

[20,25)

 

Q1

 

4

[15,20)

 

 

 

3

[10,15)

 

 

 

2

[5,10)

 

 

 

1

[0,5)

 

 

 

From the comparison we get:

-         for person number 1 the personal agents G, I, L, O, Q3 react on his salaries,

It means that his salaries are in relation with realism, practice, responsibility, trust, open-mindness, gentleness which can be disturbed by weak will, irresponsibility, dependance, mood and lack of perseverance,

-         for person number 2 the personal agents E,H, L, M, N react on his salaries i.e.

It means that his salaries are in relation with submissive, unsteady, socially timid, threat-sensitive, escaping from uncertain situations, transparent, self-doubting, apprehensivness and guilt-proning.

            To sum up:

  1. it is predictable, which layer is activated in connexion with salaries,
  2. the same salaries can reactivate different layers different people.

Thanks to that we can in a better way motivate people and predict people behaviour by reason of its salaries.
Table 3

The 16 personality factors Questionnaire. Description of personality agents.

Low result – in T1 scale result less then 50.

High result – in T1 scale more or equal then 50.

Factor

Low result

High result

Warmth (A)

Reserved, impersonal, distant, formal

Warm, caring, soft-hearted and generous

Reasoning (B)

They are less able to solve verbal and numerical problems of an academic nature

They are more able to solve verbal and numerical problems of an academic nature

Emotional stability (C)

Reactive, easily upset, temperamental

Calm, stable, mature, unruffled

Dominance (E)

Deferential, modest, submissive

Assertive, forceful, competitive

Liveliness (F)

Serious, quiet, reflective

Carefree, enthusiastic, spontaneous, energetic

Rule-Consciousness (G)

Expedient, non-conforming

Rule-conscious, dutiful

Social Boldness (H)

Shy, socially timid, threat-sensitive, easily embarrassed

Socially bold, outgoing, gregarious, adventuresome

Sensitivity (I)

Tough, realistic, logical, unsentimental

Emotionally sensitive, intuitive, cultured, sentimental

Vigilance (L)

Trusting, unsuspecting, forgiving, accepting

Vigilant, suspicious, distrustful, wary

Abstractedness (M)

Grounded, practical, concrete

Abstracted, imaginative, idea oriented, contemplative

Privateness (N)

Forthright, self-revealing, transparent

Private, discreet, non-disclosing

Apprehension (O)

Self-assured, unworried, complacent

Apprehensive, self-doubting, guilt-prone

Openness to Change (Q1)

Traditional, attached to familiar, resistant to change

Open to change, experimenting, freethinking

Self-Reliance (Q2)

Group-oriented, affiliative

Self-reliant, solitary, individualistic

Perfectionism (Q3)

Tolerates disorder, unexacting, casual, lax

Perfectionistic, self-disciplined, goal-oriented

Tension (Q4)

Relaxed, placid, tranquil, patient

Tense, driven, high energy, impatient

 

Bibliography

 

1.      Barber B., 1998, W mackach McŚwiata, Gazeta Wyborcza, 14-15.03.

2.      Barber B., 2001, Dżihad kontra McŚwiat, Warszawskie Wydawnictwo Literackie MUZA S.A., Warszawa.

3.      Bryll G., J. Boss; An assessment of the state of grain mixture with the use of the method of statistical reduction; Chemical Engineering Science, vol.50, no. 7, pp. 1173-1179, 1995

4.      Cattell R. B.; 1957, Personality and motivation. Structure and measurement; New York, World Book Co., 1957,

5.      Cattell R. B.;1961,  Theory of situational instrument, second order and refraction factors in personality structure research; Psychological Bulletin, 58, p.160-174,

6.      Cattell R. B.;1966,  The scree test for the number of factors; Multivariate Beh. Res. 1, p.140-161,

7.      Domański B., 2001, Kapitał Zagraniczny w przemyśle Polski, Instytut Geografii I Gospodarki Przestrzennej UJ, Kraków. (in polish).

8.      Domański R., Nowe kierunki badawcze w regionalistyce. Nowe doświadczenia polityki regionalnej, Biuletyn KPZK PAN, z 204. (in polish).

9.      Druckner P. F., 1985, Odejście od cyklu depresji, Życie Gospodarcze, 8, z dnia 24.02. (in polish).

10.  Druckner P. F., 1997, The Global Economy and the National-State, Foreign Affairs, vol. 75 no 5.

11.  Fukuyama F., 1992, The End of History and the Last Man, The Free Press, New York.

12.  Z. Garncarek; Formalizm matematyczny metody redukcji statystycznej (Mathematical formalism of the method of statisitical reduction); Zeszyty Naukowe WSP Opole, Ser. Mat. 25 pp.39-52, 1987,

13.  Barber B., 1998, W mackach McŚwiata, Gazeta Wyborcza, 14-15.03.

14.  Giddens A., 1997, Anthony Giddens on Globalization. UNRIST News, no 15.

15.  Giddens A., 2000, Runway World. How Globalization Is Reshaping our Lives, Routledge, New York.

16.  Gierańczyk W., Stańczyk A., 2003, Korporacje międzynarodowe w przestrzeni globalnej, Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego nr 5. (in polish).

17.  Gwiazda A., 2000, Globalizacja i regionalizacja gospodarki światowej, Wydawnictwo Adam Marszałek, Toruń. (in polish).

18.  Huntington S. P., 1991, The Third Wave. Democratization in the Late Twentieth Century, University of Oklahoma Press, Norman-London.

19.  Huntington S. P., 1993, The Clash of Civilizations, in: Foreign Affairs , vol. 72, no 3.

20.  Huntington S. P., 1995, Trzecia fala demokracji, Warszawa. (in polish).

21.  Huntington S. P., 1997, Zderzenie cywilizacji i nowy kształt ładu światowego, Warszawa. (in polish).

22.  Jarczewska- Romaniuk A., 2004, Przedsiębiorstwa Międzynarodowe, Oficyna Wydawnicza BRANTA, Bydgoszcz- Warszawa. (in polish).

23.  Kisiel-Łowczyc A. B., 2000, Współczesna gospodarka światowa, Wydawnictwo Uniwersytetu Gdanskiego, Gdańsk. (in polish)..

24.  Kośmicki E., 2001, Obietnice globalnego kapitalizmu, Dziś, nr 1. (in polish).

25.  Kosztołowicz M., Kosztołowicz T., Suchańska M.; 1999, Metoda redukcji statystycznej w badaniu struktur osobowościowych uczniów; WSP Kielce (materiały z ogólnopolskiej konferencji nt. Pomiar w kształceniu i samokształceniu), p.161-175, (in polish)

26.  Kosztołowicz M., Szerla M.;2004,  Evaluation of postoperative pain with the statistic reduction method; University of Computer Telecommunications in Kielce,  p. 201-206, Kosztołowicz M.;1993,  Pojęcie aksjomatu w dydaktyce na przykładzie aksjomatu dydaktycznego Kerschensteinera; w: Teraźniejszość i przyszłość badań pedagogicznych na tle zmian w edukacji; WSP Kielce, (in polish)

27.  Reykowski J.; 1971,  O niektórych integracyjnych I regulacyjnych funkcjach osobowości; Psychologia wychowawcza, nr 3,  (in polish),

28.  Robertson R., 1992, Globalization: Social Theory and Global Culture, London, p. 396.

29.  Robertson R., 1995, Glocalization: tim-space and homogeneity- heterogeneity, in: Featherstone M. (red), Global Modernities, Sage Publication.

30.  Rembowska K., 2001, Kulturowa płaszczyzna interpretacyjna geografii społeczno- ekonomicznej w: w: Rogacki H. (red.), Koncepcje teoretyczne i metody badań geografii społeczno- ekonomicznej i gospodarki przestrzennej, Bogucki Wydawnictwo Naukowe, Poznań. (in polish).

31.  Sala S., 2003, Przemiany strukturalne polskiego rolnictwa w obliczu integracji europejskiej, w: Czudec A. [red.] Regionalne uwarunkowania ekonomicznego rozwoju rolnictwa i obszarów wiejskich, UR, Rzeszów 2003, s. 328 – 338. (in polish).

32.  Sala S., 2003, Wyzwania korporacji transnarodowych w dobie globalizacji, w: Badania Naukowe, Zeszyt 9, Nr 1, WSU, Kielce, s 131-142. (in polish).

33.  Sala S., 2004, Rozwój i znaczenie korporacji transnarodowych w  gospodarce światowej, w: Pierwsza Ogólnopolska Metodyczna Konferencja Naukowa nt. "Przedsiębiorczość a współczesne wyzwania cywilizacyjne", Kraków 27 – 28 wrzesień 2004r. (in polish).

34.  Sala S., 2005, Prÿì³ çàêîðäîíí³ ³íâåñòèö³¿ ó ãëîáàë³çàö³éíèõ ïðîöåñàõ, Ëüâ³âñüêà Ñóñï³ëüíî-Ãåîãðàô³÷íà Øêîëà, Ìàòåð³àëè ì³æíàðîäíîãî íàóêîâîãî ñåì³íàðó, Âèäàâíè÷èé öåíòð ËÍÓ ³ìåí³ ²âàíà Ôðàíêà, Ëüâ³â, c. 211-223.

35.  Sala S., 2005, Rozwój korporacji transnarodowych w gospodarce światowej, w: Zioło Z. Rachwał T. [red.], Przedsiębiorczość a współczesne wyzwania cywilizacyjne, Przedsiębiorczość- Edukacja nr 1, Kraków s.33-45, (in polish).

36.  Sala S., 2006, Polskie firmy na tle zagranicznych korporacji w dobie globalizacji,  w: Z. Zioło i T. Rachwał [red.], Efekty restrukturyzacji polskiej przestrzeni przemysłowej, Prace Komisji Geografii Przemysłu PTG Nr 9, Komisja Geografii Przemysłu PTG i Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytutu Geografii AP w Krakowie, Warszawa – Kraków, s. 170-180. (in polish).

37.  Sala S., 2006, Procesy globalizacji a obszary metropolitalne, w: Makieła Z. Fedan R. [red.] Rzeszowski i Krakowski obszar metropolitalny, Kraków, s.27-42, (in polish).

38.  Sala S., 2006, Transnational corporations. Theirs development and role in global economy, Theoretical and metodological problems of human geography,  Lviv Ivan Franko National University Publishing Center, Lviv.

39.  Sala S., 2007 Wpływ procesów globalizacji na państwo [w:] Kiniorska I., Sala  S. (red.) 2007: Rola geografii społeczno-ekonomicznej w badaniach regionalnych, Nauki geograficzne w badaniach regionalnych, tom III, IG AŚ Kielce, Oddział Kielecki PTG, Kielce, s. 167-176. (in polish).

40.  Sala S., 2007, Proces of globalisation and them consequences, w: E.M.Hectepob [red.] Geology and civilization, V International Conference Geology at School and University, Sankt-Petersburg, s. 16-18,

41.  Sanocki W.; 1978,  Kwestionariusze osobowości w psychologii; PWN Warszawa,  (in polish),

42.  Szymański W., 2001, Globalizacja, wyzwania i zagrożenia, Wydawnictwo Difin, Warszawa. (in polish).

43.  Stiglitz J., 2004, Globalizacja, Wydawnictwa Naukowe PWN, Warszawa. (in polish).

44.  Yang X., 1995, Globalization of the Automobile Industry: the United States, Japan and the People’s Republic of China. Praeger Publishers, Westport, p. 2.

45.  Zięba A., 1975,  Badanie rozmieszczenia populacji; Zeszyty Naukowe  WSP w Opolu, Matematyka XVIII,  (in polish).

46.  Zorska A., 2000, Ku globalizacji?, Przemiany w korporacjach transnarodowych i w gospodarce światowej, Państwowe Wydawnictwo Naukowe, Warszawa. (in polish).

47.  Zorska A., 2001a, Globalization and Regionalization. The Impact of TNCs on Integration of Central Europe, in: Bunz H., Kukliński A (red), Globalization. Experiences and Prospects, Friedrich Ebert Sfiftung, Warsaw. (in polish).

48.  Zorska A., 2001b, Poland and Globalization: from an Edge to the Core, in: Poland International Economic Report, WSE, Warsaw. (in polish).

49.  Zorska A., 2002, Korporacje międzynarodowe w Polsce, Wydawnictwo Difin, Warszawa. (in polish).

50.  Zorska A.(red.), 2002b, Korporacje międzynarodowe w Polsce, Wydawnictwo Difin, Warszawa. (in polish).